

Wrocław University of Technology	Master programmes in English at Wrodaw University of Technology
	ntroduction
Generation of a physical sector of a physical secto	rfacing calibration analog-to- digital conversion analog digital display, control control display, control
#	V measured value
A humidity sensor as an	example of how the measured value is obtained
	Vector United of Education

	Int	troductio	on
Measurand	Sensor	Measurement range	Principle
Temperature	PTC metal	-200 + 800°C	Positive temperature coefficient of the resistance of metals; e.g., platinum
	PTC thermistor	$-50\ldots + 150^{\circ}C$	Positive temperature coefficient of the resistance of semiconductors; e.g., silicon
	NTC thermistor	− 50 + 150°C	Negative temperature coefficient of the resistance of metal-oxide ceramic
	Transistor	- 50 + 150°C	Negative temperature coefficient of the base-emitter voltage of a transistor
	Thermocouple	$-200 \ldots + 2,800^{\circ}C$	Thermo-electric voltage at contact of different metals
	Crystal oscillator	- 50 + 300°C	Temperature coefficient of the resonant frequency of specially cut quartz crystals

Wrocław University	of Technology at W	ster programn /rocław University of	nes in English f Technology
	Intr	oductic	n
Measurand	Sensor	Measurement range	Principle
Sound	Dynamic microphone		The induction of a voltage by movement of a coil within a magnetic field
	Condenser microphone		The voltage of a charged capacitor varies with the distance between the plates
	Crystal microphone		The piezoelectric effect generates a voltage
Magnetic field	Induction coil		Supplies voltage if the magnetic field changes or the coil moves within the field
4	Hall-effect device	0.1 m 1 T	Produces a voltage across the semiconductor by deflection of electrons in the magnetic field
	Magnetoresistor	0.1 1T	Resistance increases in the semiconductor as a function of field strength
* Taken from [1]			noro strength
4	HUMAN CAPITAL	Whodaw University of Technology anced from the EU European Social Fund	

	Int	roductio	n
Measurand	Sensor	Measurement range	Principle
Force	Strain gauge	10 ⁻² 10 ⁷ N	Force causes elastic elongation of a thin-film resistor, thereby increasing its resistance
Pressure	Strain gauge	$10^{-3} \ \dots \ 10^3$ bar	The bridge circuit of the strain gauge on the diaphragm is detuned by pressure
Acceleration	Strain gauge	1 5,000 g	The strain-gauge bridge is detuned by acceleration force on weighted diaphragm
Linear displacement	Potentiometric displacement transducer	μm m	The potentiometer tap is shifted
	Inductive displacement transducer	$\mu m \ \dots \ 10^{-1} \ m$	The inductive bridge is unbalanced by displacement of a ferrite core
	Incremental displacement transducer, optical	μm m	The reticle pattern is scanned. The number gives the displacement

-	Intr	oduction	
Measurand	Sensor	Measurement range	Principle
Gas concentration	Ceramic resistor		The resistance changes with the adsorption of the test substance
	MOSFET		Change in threshold voltage during adsorption of the test substance under the gate
	Absorption spectrum		Absorption lines are characteristic for each gas
Humidity	Capacitor	1 100%	The dielectric constant increases due to water absorption as the relative humidity rises
	Resistor	5 95%	The resistance decreases due to water absorption as the relative humidity rises

Wrocław University of Technology	Master programmes in English
Linearia t	zation of the PTC hermistors
Iret Ilin Iret Ruin Ra 10mA -25kΩ Pt100	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $
Principle of linearized opera of a current source th * Taken from [1]	ation of Pt Sensors, and implementation at has a negative output resistance
HUMAN CAPITAL AMAGE - SET METHOD	Venders University of Technology

Wrodaw University of Technology Master programmes in English at Wrocław University of Technology
Linearization of the NTC thermistors
$I_{rer} \bigoplus_{V_{\theta} = I_{ref} \cdot R_{lin}} R_{\theta} \bigoplus_{V_{\theta}} V_{\theta}$ $V_{\theta} = I_{ref} \cdot R_{lin} \frac{R_{\theta}}{R_{\theta} + R_{lin}}$ $V_{\theta} = V_{ref} \frac{R_{\theta}}{R_{\theta} + R_{lin}}$ Linearization of NTC thermistors characteristic using R _{lin} .
EXAMPLE AND A STATE OF

Wrocław University of Technology at Wro	er programmes in English dew University of Technology
Diodes and Tempera	l Transistors as ture Sensors
The use of the base-emitter voltage for temperature measurement	V _{BE} /mV 800 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* Taken from [1]	Window United of The Annual Science Sc

Wrocław University of Technolo	Master progran at Wrocław University	nmes in English y of Technology
Transistor Ten	nperature Se	ensors example
57	STLM20	
Ultra-low current 2.4 V precis	ion analog temperature sensor	
Precision analog voltage output temperature sensor ± 1.5 °C temperature accuracy at 25 °C Ultra-low quiescent supply current: 8.0 µA (max) Operating voltage range: 2.4 V to 5.5 V	A	* Taken from "STLM20 – Ultra-low current 2.4V precision analog temperature sensor" Technical Data
Operating temperature range: -55 °C to 103 °C (grade - 7) -40 °C to 85 °C (grade - 9) SOT323-5 (SC70-5) 5-lead package UDFN 4-lead package	SOT323-5, SC70-6 (W8)	Sheet, ST microelectronics, 2009 [8]
Applications Third generation (3G) cell phones Multimedia PDA devices GPS devices	A E	
Portable medical instruments Voltage-controlled crystal oscillator temperature monitors RF power transistor monitor	UDFN 4-lead (DD)	
HIMAN CAPITAL	Weedaw University of Technology Protect co-financed from the EU European Social P	statute C

Wrocław University of Technology Master pr at Wrocław U	rogrammes in English Jniversity of Technology		
Thermo	couples		
By Copper Principle of t measurement Cu - Ni Va. № thermocouple	emperature nt with es		
Pre Cu softermal block 1 block 2 block 2	Φ _M		
Compensation of the reference junction temperature	A practical configuration for a thermocouple systems		
Taken from [1]	Taken from [1] 👔 KIMAN CAPTAL 🔯 Index (Jeans) of Tabulage and a second		

*	negative terminal	average	range
Copper	Constantan	42.8 uV/°C	$-200 \text{ to} + 400^{\circ}\text{C}$
Iron	Constantan	51.7 uV/°C	- 200 to + 700°C
Chromel	Constantan	60.9 µV/°C	- 200 to +1,000°C
Chromel	Alumel	40.5 µV/°C	- 200 to +1, 300°C
Platinum	Platinum- 10% rhodium	6.4 uV/°C	0 to +1, 500°C
Platinum	Platinum-13% rhodium	6.4 uV/°C	0 to +1, 600°C
Platinum- 6% rhodium	Platinum- 30% rhodium		0 to +1, 800°C
Tungsten	Tungsten- 26% rhenium		0 to +2, 800°C
Tungsten-5% rhenium	Tungsten- 26% rhenium	15 µV/°C	0 to +2, 800°C
	Copper Iron Chromel Platinum Platinum Platinum - 6% rhodium Tungsten - 5% rhenium	Copper Constantan Iron Constantan Chromel Constantan Chromel Aumel Platinum Platinum-13% rhodium Platinum Platinum-30% rhodium Platinum-6% rhodium Tungsten-26% rhenium Tungsten-5% rhenium Tungsten-26% rhenium	$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $

				_	-1							
					۱h	er	m	OC	οι	ומו	es	
			MEASU	REMENT T	ENPERATI	JRE SPAN	AT (C)			-		
Тин	100°C	200 °C	300°C	400°C	500°C	600°C	705°C	803°C	900.C	1000°C		
-200°C	18.7/86.6 15000 16500	18.7/169 9760 11500	18.7/255 9060 10000	18.7.340 6650 8870	18.7/422 5620 7870	\$8,7/511 4750 7150	18.7/590 4020 6420	18.7/665 3480 5900	18.7/750 3090 5380	18.7/845 2740 4990		
-100°C	60.4/80.6 27400 29400	60.4/162 15400 17900	60.4/243 10600 13000	60.4/324 7870 10200	60.4/402 6040 8660	60.4/487 4990 7500	60.4/562 4220 6490	60.4/649 3570 5900	60.4/732 3090 5360			
0°C	100/78.7 33200 35700	100/158 16200 18700	100/237 105/00 13000	100/316 7680 10000	100/302 6040 8250	100.475 4870 7150	100.549 4020 6340	100/634 3480 5620				
100°C	137/75 31600 34000	137/150 15400 17800	137/228 10200 12400	137/301 7500 9760	137/383 5760 8050	137,453 4750 6810	137/536 3820 8040	1	Rz/Ra			
200°C	174/73.2 30900 33200	174/147 15000 17400	174/221 9760 12500	174/294 7150 9310	174/365 5620 7680	174/442 4530 6490			Runz			
300°C	210/71.5 30100 32400	210/143 14700 16500	210/215 9530 11500	210/287 6360 8870	210/357 5360 7320							
400°C	249/68.1 28700 30900	249/137 14000 16200	249/205 9090 11000	249/274 6650 8450		Ex to	offE: The values rsc	tues listed in may be call	this table at adated from	e 1% resistor the following	oqua-	* Taken from "XTR105 4
600°C	280/66.5 28000 30100	280/133 13700 15400	280/200 8870 10500			R ₂ R ₀	= RTD res	stance at m	ini mum me	isured temps	rature.	TRANSMITTER with
600.C	316/64.9 26700 28700	313/130 13000 14700				Ru	$R = \frac{R_{LM}}{2122}$	$R_2 = R_1$				sensor exitation and linearization". Texas
700°C	348/61.9 26100					R	(R _{LB}	R ₀ XR ₂ -F	1			Instruments Application
800.C	374/60.4 24900 26700	1				wh	2(2)	H - R ₂ - R ₂ TD resistar	ce at (T _{um} -	T _{ana} V2		Note, 2004 [2]
	26100	1					R ₂ = P	TD resistar	ce at T _{sux}			

		5113013 3	unnary
	(R	TD)	
Туре	Manufacturer	Output signal nominal value	Temperature range
Metal PTC thermistor		No.	1. 1
Pt 1001000	Heraeus	1001000 Ω	$-50+500^{\circ}C$
Fk 1002000	Heraeus	1002000 Ω	-200+500°C
1 Pt 1001000	Omega	1001000Ω	-70+500 °C
Pt 1001000	Murata	1001000 \$2	-50+600°C
Pt 1001000	Sensycon	1001000 \$2	- 50 + 600°C
Silicon PTC thermistor			
AD 22100 ¹	Analog D.	22 mV/K	- 50 + 150°C
KTY-Series	Infineon	12 kΩ	$-50+150^{\circ}C$
KTY-Series	Philips	12 kΩ	$-50+300^{\circ}C$
Metal-ceramic NTC the	rmistors		
M-Series	Infineon	1 k100 kΩ	- 50 + 200°C
NTH-Series	Murata	100 Ω100 kΩ	- 50 + 120°C
Thomaiotom	Philine	1kΩ 1MΩ	$-50 + 200^{\circ}C$

Wrocław University of Technology	Master programmes in at Wrocław University of Tech	
S	train guages	
If a strip of conductive m and longer, both change resistance end-to-end. C placed under compressi and shorten.	netal is stretched, it w is resulting in an incre Conversely, if a strip of ve force (without buc	ill become skinnier ease of electrical of conductive metal is kling), it will broaden
Gauge insensitive to lateral forces	Bonded strain gauge Resistance measured between these points	$R \uparrow = \rho \frac{l \uparrow}{s \downarrow}$ $U \uparrow = R \uparrow \cdot I$
* Taken from [1]		
HUMAN CAPITAL	Netoday University of Technology	

< 40 mbar	
	Water level in a washing machine, dishwashert
100 mbar	Vacuum cleaner, filtration monitoring, flow measurement
200 mbar	Blood pressure measurement
1 bar	Barometer, motor vehicle (correction for ignition and fuel injection
2 bar	Motor vehicle (tire pressure)
10 bar	Expresso machinery
50 bar	Pneumatics, industrial robots
500 bar	Hydraulics, construction machinery
2000 bar	Car motor with fuel injection

Wrocław University of Technology At Wrocław University	ogrammes in English
Pressure Me	asurement
A differential pressure sensor Expunsion and compression of the during the sensor Automatical and the sensor A	* Taken from "Electronic circuits : handbook for design and application" Tietze U., Schenk C. [1]
HUMAN CAPITAL REVEALED Works/Liven	r of Technology

Туре	Manufacturer	Pressure	Measurement	Zero point	Bridge	Temp.	
	2	range	range	error	resistance	compensation	1110
MPX 10	Freescale	0.10.5 bar	35 mV	50%	$1 k\Omega$	-	
MPX 2000	Freescale	0.12 bar	40 mV	3%	2 kΩ	internal	
MPX 5000*	Freescale	40 m10 bar	4.5 V	1%	-	internal	
40PC*	Honeywell	117 bar	4 V	2%		internal	
170PC	Honeywell	1770 mbar	30 mV	10%	6kΩ	21.41a	
180PC*	Honeywell	0.310 bar	5 V	2%	_	internal	
240PC*	Honeywell	135 bar	5V	1%	-	internal	
KP100*	Infineon	1 bar	14 bit	10%	-	internal	
KP120*	Infineon	1 bar	4 V	2%	1.0	internal	
NPC12xx	Novasensor	70 m7 bar	75 mV	3%	4 kΩ	internal	
NPH	Novasensor	25 m0.4 bar	100 mV	3%	4kΩ	internal	
ASDX*	SenSym	70 m7 bar	4 V	2 %	-	internal	
SDX	SenSym	70 m7 bar	90 mV	3%	4kΩ	21.41a	
SX	SenSym	70 m20 bar	110 mV	40 %	4kΩ		
Sensor Amp	lifters					The loss	
MAX 1450	Maxim		4.5 V	1%		21.42	

Ĺ	bxygen sei	nsors	
Vater quality contro	ol – KDS25B.		
	Specificat	ions	
No.1 Server	closs: Actrode (*) Actrode (-)		Model
No.3 Therein No.4 Therein	a a	Item	KDS-25B
Connector and	et Measurement ran	199	0~80mg/L dissolved oxygen
	Accuracy in wate	r at 25°C±1°C	±5% (full scale)
NO +PL & SZEW		Atmospheric pressure	81~203kPa (corresponds to 10m of water depth)
Temperature	c mm Operating condition	ons Temperature	5-35°C
8 8 N 12		Relative humidity	10 ~ 90%R.H. (no condensation)
	Thermal time con	istant	10 min. or less
A Montrare	Initial output volta conditions	ige in clean air under standard te	st 8.0~15.0mV
DO NOT TO YOU ARMINING	ε	Atmospheric pressure	1013±5hPa
			ortouto
× (@)	Standard test con	ditions Temperature	25 C±1 C

Wrocław University of Technology Master programmes in English at Wrocław University of Technology
Oxygen sensors
Theory of operation of the KE25/50 - the KE series sensor is a lead- oxygen battery which incorporates a lead anode, an oxygen cathode made of gold, and a weak acid electrolyte. Oxygen molecules enter the electrochemical cell through a non-porous fluorine resin membrane and are reduced at the gold electrode with the acid electrolyte. The current which flows between the electrodes is proportional to the oxygen concentration in the gas mixture being measured. The terminal voltages across the thermistor (for temperature compensation) and resistor are read as a signal, with the change in output voltages representing the change in oxygen concentration.
Engineering Inc., 2007 [7]
NUMARY CAPITAL Diversity of the Company of the Comp

Weedaw University of Technolog

ircuit voltage (Vc)			
	5.0V ± 0.2V DC		
leater voltage (VH)	5.0V ± 0.2V DC/AC	Item	Specification
eater resistance (room temp.)	83Ω at room temp.	Sensor resistance (air)	$10k\Omega \sim 90k\Omega$
	(typical)	Sensor resistance gradient (B)	0.3 ~ 0.6
oad resistance (RL)	Variable (0.45k Ω min.) $\beta = Rs(10ppm hydrogen)/Rs(a$		gen)/Rs(air)
ensor power dissipation (Ps)	$\leq 15 \text{mW}$	Heater current	42 ± 4 mA
perating & storage temperature	-10°C ~ +50°C	Heater power consumption	210mW (typical)
ptimal detection concentration	1~30ppm		

Window University of Technology Master programmes in English

Carbon monoxide sensors

The structure of TGS2442. The sensor utilizes a multilayer structure. A glass layer for thermal insulation is printed between a ruthenium oxide (RuO2) heater and an alumina substrate. A pair of Au electrodes for the heater are formed on a thermal insulator. The gas sensing layer, which is formed of tin dioxide (SnO2), is printed on an electrical insulation layer which covers the heater. A pair of Pt electrodes for measuring sensor resistance is formed on the electrical insulator. An activated charcoal filter is used for the purpose of reducing the influence of noise gases.

Wrocław University of Technology		Master programmes in English at Wrocław University of Technology			
Carbon			monoxid	e sensors	
Model number		TGS 2442			
Sensing	Sensing element type		M1	$-V_cR_i$	
Standard package		TO-5 metal can	$R_s = \frac{-R_s}{R_s} - R_s$		
Target gases		Carbon monoxide	³ V		
Typical de	etection range		30 ~ 1000 ppm	om	
Standard circuit conditions	Heater voltage cycle	Vн	VHH#4.8V±0.2V DC, 14ms VHL#0.0, 986ms		
	Circuit voltage cycle	Vo	Vc=0V for 995ms, Vc=5.0V±0.2V DC for 5ms	$R_{s}(CO,300ppm)$	
	Load resistance	RL.	variable (≥10kΩ)	$\beta = \frac{\beta}{p} \left(\frac{\beta}{p} \right)$	
	Heater resistance	Rн	17 ± 2.5Ω at room temp.	$R_{s}(CO,100ppm)$	
	Heater current	н	approx. 203mA(in case of Viev)		
Electrical characteristics under standard test conditions	Heater power consumption	Рн	approx. 14mW (ave.)		
	Sensor resistance	Rs	13.3kp ~ 133kp in 100ppm of carbon monoxide		
	Sensitivity (change ratio of Rs)	β	0.13 ~ 0.31	* Taken from , Technical information for TGS2442".	
	Test gas conditions		Carbon monoxide in air at 20±2°C, 65±5%RH	Technical Data Sheet, Figaro	
Standard test conditions	Circuit conditions		Same as Std. Circuit Condition (above)	Engineering Inc., 2007, [10]	
	Conditioning period before test		2 days or more		
			Woodaw University of Technology	NUCCHAR	

Carbon dioxide sensors						
Item	Specification					
Heater voltage (VH)	5.0V ± 0.2V DC					
Heater resistance (RH) - room temp.	70±7Ω					
Heater current	approx. 50mA	Term	Course Manadam			
Heater power consumption	approx. 250mW	EMF in 350ppm of CO2	220 ~ 490mV			
Operating conditions	-10°C ~ +50°C, 5 ~ 95%RH	AEMF EMF (350ppmCO2)	44 ~ 72mV			
Storage conditions	-20°C ~ +60°C, 5 ~ 90%RH (store in a moisture proof bag with silica gel)	EMP (3500ppm CO.	2)			
Optimal detection concentration	350 ~ 10,000ppm					
*Taken from "Technical informatio Engineering Inc., 2006, [11]	n for Carbon Dioxide Ser	sor TGS4161", Technical D	oata Sheet, Figaro			

