

T6 USB Vector Network Analyzer

Operation Manual

©Copyright 2020 by Transcom Instruments Co., Ltd. Instruction Book Part Number 920-T6 Rev. B, 20200518

Safety Precautions

The following are general safety precautions that are not necessarily related to any specific part or procedure, and do not necessarily appear elsewhere in this publication. These precautions must be thoroughly understood and apply to all phases of operation and maintenance.

WARNING

Keep Away from Live Circuits

Operating Personnel must at all times observe general safety precautions. Do not replace components or make adjustments to the inside of the test equipment with the high voltage supply turned on. To avoid casualties, always remove power.

WARNING Shock Hazard

Do not attempt to remove the RF transmission line while RF power is present.

WARNING

Do Not Service or Adjust Alone

Under no circumstances should any person reach into an enclosure for the purpose of service or adjustment of equipment except in the presence of someone who is capable of rendering aid.

WARNING Safety Earth Ground

An uninterruptible earth safety ground must be supplied from the main power source to test instruments. Grounding one conductor of a two-conductor power cable is not sufficient protection. Serious injury or death can occur if this grounding is not properly supplied.

WARNING

Resuscitation

Personnel working with or near high voltages should be familiar with modern methods of resuscitation.

WARNING

Remove Power

Observe general safety precautions. Do not open the instrument with the power applied.

Safety Symbols

WARNING

Warning notes call attention to a procedure, which if not correctly performed, could result in personal injury.

CAUTION

Caution notes call attention to a procedure, which if not correctly performed, could result in damage to the instrument.

The caution symbol appears on the equipment indicating there is important information in the instruction manual regarding that particular area

Note: Calls attention to supplemental information.

Warning Statements

The following safety warnings appear in the text where there is danger to operating and maintenance personnel, and are repeated here for emphasis.

WARNING

Leaking RF energy is a potential health hazard. Never attempt to connect or disconnect equipment from the transmission line while RF power is being applied. Severe burns, electrical shock, or death can occur.

Caution Statements

The following equipment cautions appear in the text whenever the equipment is in danger of damage, and are repeated here for emphasis.

CAUTION

Do not exceed maximum input power levels. Exceeding the maximum input will damage the VNA. If unsure of power levels, measure the test connection with a power sensor before using the VNA.

CAUTION

Do not block airflow to fan or air vents. Unit will overheat if the fan is not circulating air through the unit.

CAUTION

Replace battery pack with OEM part only, do not use any other battery.

Safety Statements

USAGE

ANY USE OF THIS INSTRUMENT IN A MANNER NOT SPECIFIED BY THE MANUFACTURER MAY IMPAIR THE INSTRUMENT'S SAFETY PROTECTION.

SERVICE

SERVICING INSTRUCTIONS ARE FOR USE BY SERVICE - TRAINED PERSONNEL ONLY. TO AVOID DANGEROUS ELECTRIC SHOCK, DO NOT PERFORM ANY SERVICING UNLESS QUALIFIED TO DO SO.

About this Manual

This manual covers the operating and maintenance instructions for the following models:

T6

Changes to this Manual

We have made every effort to ensure this manual is accurate. If you discover any errors, or if you have suggestions for improving this manual, please send your comments to our factory. This manual may be periodically updated. When inquiring about updates to this manual refer to the part number and revision on the title page.

Table of Contents

Safe	ty Pr	ecautions	2				
	Safety Symbols3						
	Warning Statements						
	Caution Statements						
	Safety Statements5						
Abo	ut th	is Manual	6				
	Cha	nges to this Manual	6				
Tabl	e of (Contents	7				
1	GEN	IERAL OVERVIEW	.11				
	1.1	Symbols	.11				
	1.2	Introduction	.11				
		1.2.1 Front Panel	.11				
		1.2.2 Rear Panel	.12				
	1.3	Interface	.13				
		1.3.1 Channel Window	.15				
		1.3.2 Data Entry Bar	.15				
		1.3.3 Instrument Status Bar	.16				
		1.3.4 Function Menu	.16				
	1.4	Power On Operation	.18				
		1.4.1 Preparations Before Starting Up	.18				
		1.4.2 Startup Steps	.18				
	1.5	Instrument Operation Method	.18				
	1.6	Measurement Steps	.19				
2 SE	T TH	E MEASUREMENT CONDITIONS	.20				
	2.1	Preset	.20				
	2.2	Calibration/System Z0	.20				
	2.3	Set the Channel And Trace	.20				
		2.3.1 Number of Channels And Display Window Layout Settings	.20				
		2.3.2 Trace Quantity and Display Window Layout Settings	.22				
		2.3.3 Active Channel	.23				
		2.3.4 Active Trace	.24				
	2.4	Stimulus	.24				
	2.4.1 Sweep Type						
		2.4.2 Sweep Range	.25				
		2.4.3 Rf Out	.26				
		2.4.4 CW Freq	.26				
		2.4.5 Power	.26				
		2.4.6 Point	.27				
2.4.7 Meas Delay							
	2.5 Measurement						
	2.5.1 S-parameter Measurement						

	2.5.2 Absolute	29
	2.6 Format	31
	2.6.1 Rectangular	31
	2.6.2 Polar	33
	2.6.3 Smith	33
	2.7 Scale	34
	2.7.1 Auto Scale	34
	2.7.2 Adjust the Cartesian Scale Manually	35
	2.7.3 Artificially Adjust the Polar Plot Smith Scale	36
	2.7.4 Other Parameter Settings	38
	2.8 Display	38
	2.8.1 Channel Max	38
	2.8.2 Trace Max	39
	2.8.3 Trace Data Operations	39
	2.8.4 Title	40
	2.8.5 Update	41
3	MEASURE THE CALIBRATION	43
	3.1 Calibration Type Description	43
	3.2 Calibration Status Query	45
	3.2.1 Calibration Status of the Channel	45
	3.2.2 Trace Status Check for Trace	46
	3.3 Calibration Process	47
	3.3.1 Select the Calibration Parts	47
	3.3.2 Calibration Part Parameter Editing	48
	3.3.3 Open-circuit Response Calibration	48
	3.3.4 Short-circuit Response Calibration	50
	3.3.5 Transmission Response Calibration	51
	3.3.6 All 1 Port Calibration	54
	3.3.7 Single Channel 2 Port Calibration	55
	3.3.8 All 2-port Calibration	56
4	MEASURE THE TRIGGER	59
	4.1 Select the Trigger Source	59
	4.2 Set the Trigger Mode	59
	4.3 Trigger Control	60
5	ANALYSIS OF MEASUREMENT RESULTS	61
	5.1 Markers	61
	5.1.1 Marker Overview	61
	5.1.3 Marker Operation	62
	5.1.4 Marker Search	64
	5.1.5 Marker Function	76
	5.2 Limit Test	82
	5.2.1 Limit Table Editing	84
	5.2.2 Limit Line Offset	86
	5.2.3 Turn ON / OFF Limit Test	87

	5.3	Ripple	e Test Ripple Test	88
		5.3.1	Ripple Limit Table Editing	89
		5.3.2	Turn ON / OFF the Ripple Limit Test	90
	5.4	Fixtur	e Simulator Analysis Fixture Simulator	92
	5.5	Time	Domain Analysis Time Domain	96
	5.6	Time	Domain Gating Function	97
	5.7	Meas	urement Result Parameter Conversion	101
6	DATA	OUTPL	JT	103
	6.1	Save t	he Data	103
		6.1.1	Data Retention Category	103
		6.1.2	Save State	103
		6.1.3	Save Channel Save Channel	105
		6.1.4	Save Trace Data	106
	6.2	Save	Data ToutchStone	106
	6.3	Data I	Recovery Recall	108
		6.3.1	State Recover State	108
		6.3.2.	Channel Recovery Recall Channel	109
		6.3.3	Delete State	110
		6.3.4	Delete all States	111
7	MEAS	SUREM	ENT OPTIMIZATION	112
	7.1	Expar	nd the Dynamic Range	112
		7.1.1	Reduce IF Bandwidth	112
		7.1.2	Open the Average Scan Averaging	112
	7.2.	Reduce	e Trace Noise	113
	7.3	Impro	ve the Accuracy of Phase Measurement	114
		7.3.1	Electrical Delay	114
		7.3.2	Phase Offset Phase	114
	7.4	Increa	ase the Measurement Speed	115
		7.4.1	Closing the Update of Display Information	115
		7.4.2	Offset Error Correction	115
		7.4.3	Segment	116
8	SYSTE	EM FUN	ICTION	120
	8.1	Print	Function	120
		8.1.1	Printer Output Function	120
		8.1.2	Save Image To File	120
	8.2	Syster	m Setting	121
		8.2.1	Ref Source	121
		8.2.2	System Correction Setting	122
		8.2.3	Beeper Setting	122
		8.2.4	Key Lock	123
		8.2.5	Explorer	124
		8.2.6	Color Setup	124
		8.2.7	Time Setup	124
		8.2.8.	Touch Screen Positioning Calibration	125

		8.2.9 Display Brightness Adjustment					
		8.3 Demo Mode Settings					
		8.4	LAN Setting	.127			
		8.5	Preset	.130			
		8.6	File Manage	.130			
	8.7 Update1						
	8.8 About						
	8.9	Full	Screen	.133			
9	ммо)n fai	JLTS AND SOLUTIONS	.134			
10	IALIZ	ZE THI	E PARAMETER VALUE	.136			
11	1 SET PARAMETERS AND RANGE142						
Limi	imited Warranty145						

1 GENERAL OVERVIEW

1.1 Symbols

1. Panel Keys. Panel buttons in this article with a box button or button, such as:

Enter , refer to the instrument panel keys.

2. Function Button. Function button in this article with no box buttons or function buttons, such as: "Sweep Type" refer to the instrument interface function button, also known as "Soft Button" or "SoftKey".

1.2 Introduction

1.2.1 Front Panel

Figure 1-1 Front Panel(T6)

1.2.1.1 Probe Power Supply

DC power supply output for measuring the DC power supply of active devices under test. According to the specific needs of users to customize, including the output voltage, the output current.

1.2.1.2 USB Interface

The instrument provides multiples USB (Universal Serial Bus) ports for connecting USB keyboards, USB mice, USB memory, or printers.

1.2.1.3 Test Port

Used to connect the device under test DUT, calibration parts and so on. [Note]: The signal input to the instrument must not exceed the maximum allowable input power and maximum input voltage (identification value on the panel test port), otherwise it will cause the instrument to be destroyed.

1.2.1.4 Power Switch

For the instrument's boot, shutdown.

1.2.2 Rear Panel

Main Interface Description:

1. USB Interface

The instrument provides multiple USB (Universal Serial Bus) interfaces that can be used to connect a USB keyboard, a USB mouse, a USB memory, or a USB printer. 2. LAN Interface

Connect the instrument to the LAN (LAN) interface. 8-pin RJ-45, 10Base-T / 100Base-TX Ethernet interface.

3. Power Plug and Switch

The main power switch of the instrument. Used to connect (|) or disconnect (O) external power supply.

[Note]: The instrument must be powered by a power outlet with a ground terminal and the ground terminal of the power outlet must be properly grounded.

4. Reference Clock

REF IN, 10MHz reference signal input interface. When the instrument is set to external reference, the reference clock signal is input from this interface, the instrument will automatically lock the signal, improve the accuracy of the measurement signal and frequency stability.

REF OUT, 10MHz reference signal output interface. The instrument internal clock signal is output from this interface and used as a reference clock for other instruments.

5. External Trigger Interface

External trigger signal interface. BNC, female connector, this interface detects the TTL signal from the high state of the negative transition as a trigger signal. To use this interface to generate a trigger signal, the instrument trigger source must be set to "external".

6. Ground Terminal

The ground terminal, used for instrumentation and environment, can be connected to this ground terminal using a banana plug.

[Note]: When using the instrument, be sure to ground the instrument.

1.3 Interface

The main interface of the instrument is as follows:

Figure 1-7 Instrument Display Interface

1.3.1 Channel Window

Figure 1-8 channel window

The window used to display the trace. Because a channel corresponds to a window, it is called a channel window. When the outline of the channel window is light gray, it indicates that the channel is a working channel (the setting is being made for that channel). In the following figure, channel 1 (upper window) is the

working channel. To make the channel a working channel, use the Channel Next or

Channel Prev key. Clicking inside the channel window also makes the channel a working channel.

Channel 1 Window and Channel 2 Window Describes the different measurement parameters available in the channel measurement window. The measurement parameters described in channels 1 and 2 correspond to the same channel measurement window. These parameters are displayed in a separate window for ease of reading.

1.3.2 Data Entry Bar

Data entry field. Used to enter numeric data. Press the key or function key of the input data, the data entry bar will appear at the top of the screen. As shown below:

Figure 1-9 Data Entry Bar

Parameter name: Displays the name of the parameter for which you want to enter a value.

Data entry box. The first time the data entry field is displayed, the current setting is displayed in the column. By typing in the input area of the front panel, you can also use the mouse or touch screen to operate the large step button and enter the value with the small step button.

Small step button. Increase or decrease the value in the data entry box in small steps. Use the mouse or touch screen to operate this button.

Big step button. Increase or decrease the value in the data entry box in large steps. Use the mouse or touch screen to operate this button.

Confirm button. Press this button to confirm the input value. Use the mouse or touch screen to operate this button.

Close button. Close the data entry box. Use the mouse or touch screen to operate this button.

1.3.3 Instrument Status Bar

READY	Indicates that the instrument is
	operating normally
NOT REAL	Y Indicates that the instrument is
	abnormal

The instrument status bar shows the current operating status of the entire instrument.

1.3.4 Function Menu

The function menu is a set of function buttons on the display, use the front panel

and down,

keys on the front panel to quickly access the corresponding function menu. The following to Marker Search as an example to illustrate:

 (\mathbf{I}, \mathbf{V}) or (\mathbf{I}, \mathbf{V}) when you select the function button, move the cursor up

Function button Select \Box button or \bigcirc knob to perform this function;

17 / 145

select between the main menu and the sub menu.

press **to exit the current operation**.

Select the marker. RBI "•" indicates that the function button is selected. Menu scroll bar. When the menu is not displayed on the screen, press the function

button on the mouse or touch screen, or press the button down on the panel

(In the second second up the second s

Function button. The function button is the softkey to be used when the actual setting is made. When " \blacktriangleright " is displayed on the right side of the function button, the function button will display the next function menu.

1.4 Power On Operation

1.4.1 Preparations Before Starting Up

- 1. Check whether the power supply to meet the requirements.
- 2. The instrument is properly grounded.
- 3. Disconnect the device under test and the connection.

1.4.2 Startup Steps

1. Turn on the power switch on the rear panel (desktop) of the instrument.

2. Turn on the power switch on the front panel (desktop) or side panel (portable) of the instrument.

3. The instrument display is lit, start the process, after the start is complete, the main interface "instrument status" is displayed as "Ready" (instrument status see "interface" section description).

4. Connect the test cable, adapter, etc. to the test port of the instrument.

5. The instrument preheat. When the instrument is not started for a long time, it is necessary to warm up for a certain period of time and start the measurement. The time of warm-up is shown in the data sheet of the corresponding model instrument.

1.5 Instrument Operation Method

You can use one of the following three methods of operation or various methods and operate the instrument:

1) Use the front panel buttons.

2) Use the mouse.

3) Use the touch screen.

1.6 Measurement Steps

The basic test procedure is as follows:

Figure 1-11 Basic test operation flow

2 SET THE MEASUREMENT CONDITIONS

2.1 Preset

Operation This function returns the instrument to factory default. Steps:

1. Press the function button Preset or front panel shortcut keys Preset.

2. Click the function button OK.

2.2 Calibration/System Z0

Steps:

1. Press the function button Calibration or the panel shortcut Cal

2. Click the Function button System ZO.

3. Press the (\bullet, \circ) , (\bullet, \circ) key to select the impedance value, or type the impedance value directly.

4. Press the Enter key to confirm.

2.3 Set the Channel And Trace

2.3.1 Number of Channels And Display Window Layout

Settings

Steps:

- 1. Click the function button Display or press the panel keypad
- 2. Click the function button Allocate Channels.

3. Press (\mathbf{I}, \mathbf{V}) to select or use the touch screen, and click the desired

window layout. As shown below:

Figure 2-1Channel window layout settings (T5215A / T5230A/T5280A)

∢ Allocate Channels			
•			
×2			
×2			
×3			
×3			
×4			

21 / 145

Figure 2-2 channel window layout settings (T5113A / T5113H)

2.3.2 Trace Quantity and Display Window Layout Settings

(1) the number of traces set

Steps:

1. Press Channel Next or Channel Prev to select the channel you want to set the trace to display.

2. Press the Display key.

3. Click the Number of Traces button to set the number of traces to be displayed.(2) trace display window layout settings

1. Press Channel Next or Channel Prev to select the channel you want to set the

trace to display.

2. Press the Display key.

3. Click the Allocate Traces function button.

4. Press, to select or use the touch screen, and click the desired window layout. As shown below:

Figure 2-3 Trace window layout settings (T5230A/T5280A)

2.3.3 Active Channel

Steps:

1. Press Channel Next or Channel Prev to select the channel you want to

activate.

Or press the function button Display> Active Trace / Channel> Next Channel, Previous Channel Select the channel to be activated.

The keys are defined as follows:

Button	Function	
Channel Next	Change the active work channel to the next channel with	
	the larger channel number.	
Channel Prev	Change the active working channel to the last channel with	
	a smaller channel number.	

2.3.4 Active Trace

Steps:

1. Press

Trace Prev to select the trace you want to activate.

Or click the function button Display> Active Trace / Channel> Next Trace, Previous Trace Select the channel to be activated trace.

The keys are defined as follows:

Trace Next

Button	Function
Trace Next	Change the active job trace to the next trace of the trace
	number.
Trace Prev	Change the active job trace to the last trace of the trace
	number.

2.4 Stimulus

2.4.1 Sweep Type

Steps:

1. Press Channel Next or Channel Prev to select the channel you want to activate.

2. Press the Sweep Setup key.

3. Click the Sweep Type function button.

4. Select the desired scan type, press the Letter key.

The scan type is as follows:

Scan Type	Description
Linear	Linear frequency scanning
Log	Logarithmic frequency sweep
Segment	Segmented frequency sweep
Power	Power scan

2.4.2 Sweep Range

- (1) Set the scan range by start and stop Steps:
 - 1. Press Channel Next or Channel Prev to select the channel you want to set.

2. Press the Start key.

3. Enter the value via the panel input button.

- 4. Press the stop key.
- 5. Enter the value via the panel input button.
- (2) Set the scanning range by center and span

Steps:

- 1. Press Channel Next or Channel Prev to select the channel you want to set.
- 2. Press the Center key.
- 3. Enter the value via the panel input button.
- 4. Press the Span key.
- 5. Enter the value via the panel input button.
- (3) Set the scan range by Marker

Steps:

- 1. Operate the Marker function to set the Marker point.
- 2. Press the Marker Fctn key.

3. On the function menu, press the relevant function button to set the Start, Stop, Center values.

The Marker Fctn function button is as follows:

Function Button	Description
Marker → Start	Set the Start value to the Marker value selected on
	the currently active trace.
Marker → Stop	Set the Stop value to the Marker value selected on
	the currently active trace.
Marker \rightarrow Center	Set the Center value to the Marker value selected on
	the currently active trace.

Note: If the marker value is relative to the reference marker, its absolute value will be set to the scan range.

2.4.3 Rf Out

Turns on and off the output of the excitation signal. When the excitation signal is turned off, normal measurement can not be performed, so it is usually not necessary to turn off the excitation signal output. This function is mainly used for the output is closed and then restart the occasion.

Steps:

Sweep Setup 1. Press the kev.

2. Click the Power button.

3. Click the RF Out function button to switch between ON and OFF once every click. When set to ON, the signal output is turned on. When set to OFF, the signal output is turned off.

2.4.4 CW Freq

Steps:

- 3. Click the Power button.
- 4. Click the CW Freq button.
- 5. Enter the value via the panel input button.

2.4.5 Power

In the frequency sweep mode, the source output power can be set in the power range.

Steps:

3. Click the Power button.

- 4. Then click the next level of the Power button.
- 5. Enter the value via the panel input button.

The correction power can be turned on, off, and the correction factor as needed.

(1) The calibration power to open, close the operating method

Steps:

- Press Channel Next or Channel Prev to select the channel you want to set.
 Press the Sweep Setup key.
- 3. Click the Power button.

4. Click the Slope State function button to switch between ON and OFF once every click. When set to ON, the calibration power is turned on; when set to OFF, the calibration power is turned off.

(2) Power correction factor setting

Steps:

- 1. Press Channel Next or Channel Prev to select the channel you want to set.
- 2. Press the Sweep Setup key.
- 3. Click the Power button.
- 4. Click the Slope Data button.
- 5. Enter the value via the panel input button.

2.4.6 Point

Set the number of scans to be scanned once, and the number of points refers to the number of data items collected at a time. The purpose is to obtain a higher trace resolution for the stimulus value. The number of scanning points is usually selected according to the following conditions.

1) To obtain a higher trace resolution for the stimulus value, select a larger point value.

2) For higher throughput, keep a small value within the allowable trace resolution range.

3) To obtain a higher measurement accuracy after calibration, use the same points as the actual measurement to calibrate.

Steps:

3. Click the Points button.

4. Enter the value via the panel input button. Refer to the data sheet for each model instrument for the range of input values.

2.4.7 Meas Delay

Steps:

- 1. Press Channel Next or Channel Prev to select the channel you want to set.
- 2. Press the Sweep Setup key.
- 3. Click the Meas Delay button.
- 4. Enter the value via the panel input button.

2.5 Measurement

2.5.1 S-parameter Measurement

The S parameter (scattering parameter) is used to evaluate the performance of the DUT reflected signal and the transmitted signal. The S parameter is defined by the ratio of two complex numbers, which contains information about the amplitude and phase of the signal. The S parameter is usually expressed as:

S output input

Output: DUT port number of the output signal

Input: The DUT port number of the input signal

For example: S parameter S21 is the ratio of the output signal of DUT port 2 to the input signal of DUT port 1, and the output signal and input signal are expressed in complex numbers.

Steps:

1. Press Channel Next or Channel Prev to select the channel you want to set.

2. Press the Meas key.

3. Click the function button for the relevant S parameter. S parameters include: S11, S21, S12, S22 (T5113A / T5113H contains only S11, S21 parameters).

2.5.2 Absolute

The Absolute measurement is used to measure the absolute power of the reference signal and the received signal on the test port. 2-port dual-channel vector network with four independent receivers, two test signal receivers Receiver A and Receiver B, two reference signal receivers ReceiverR1 and ReceiverR2, Receiver A, Receiver B used to measure the received signal power; ReceiverR1, ReceiverR2 for measurement Reference signal power. Receiver A and ReceiverR1 are configured on port 1, Receiver B and ReceiverR2 are configured on port 2, as shown in the following figure:

Figure 2-5 2-port dual-channel vector structure diagram (T5230A/T5280A)

There are six kinds of absolute power measurement modes, as shown in the following table:

Symbols	Definition		
A(1)	Test signal receiver A (Source Port 1)		
A(2) Test signal receiver A (Source Port 2)			
B(1)	Test signal receiver B (Source Port 1)		
B(2)	Test signal receiver B (Source Port 2)		
R1(1)	Reference signal receiver R1 (Source Port 1)		
R2(2)	Reference signal receiver R2 (Source Port 2)		

Steps:

1. Press	Channel Next	or	Channel Prev	to select the channel you want to set.
	Maga			

2. Press the Meas key.

3. Click the Absolute function button, enter the absolute power measurement function menu, as shown below.

Figure 2-6 Absolute Function Button Options

4. Click the need to measure the function button, the corresponding function button before playing "•", the corresponding measurement.

[Notes]:

Receiver A (Source Port1): The 1-port test receiver measures the signal power of 1-port Receiver A (Source Port2): The 1-port test receiver measures the signal power of 2-port

Receiver B (Source Port 1): The 2-port test receiver measures the signal power of 1-port Receiver B (Source Port2): The 2-port test receiver measures the signal power of 2-port ReceiverR1 (Source Port1): The 1-port reference receiver to measure the reference signal power of 1-port

ReceiverR2 (Source Port2): The 2-port reference receiver to measure the reference signal power of 2-port

2.6 Format

Provide the following data display format:

- 1. Rectangular display format
- 2. Polar coordinate format
- 3. Smith chart format

2.6.1 Rectangular

Including Log Mag, SWR, Phase, Expand Phase, Group Dalay, Lin Mag, Real, Imag. The specific meaning is as follows:

Type Symbol	Type Name	Introduction	Unit	Examples
Log Mag	Logarithmic	Amplitude	dB	Return loss
	Amplitude			measurement, insertion
				loss measurement (or
				gain measurement)
SWR	Column Patio	$\frac{1+\rho}{1-\rho}$		
		(p: Reflection		
		coefficient)		
Phase	Phase	Phase (The	Degree	Measure the deviation
		display range is	(°)	from the linear phase.
		-180 ° to +		
		180°)		
Expand Phase	Extended	Phase (It is	Degree	Measure the deviation
	Phase	possible to	(°)	from the linear phase.

		display a phase		
		of + 180 $^{\circ}$ or		
		more and -180 $^\circ$		
		or less)		
Group Dalay	Group Dalay	Signal	Second	
		transmission	(s)	
		delay in the DUT		
Lin Mag	Linear			
	amplitude			
Real	Real number	The real part of		
		the measured		
		complex		
		parameter		
Imag	Imaginary	The imaginary		
	number	part of the		
		measured		
		complex number		

Figure 2-7 Data format - Rectangular

2.6.2 Polar

In the polar coordinate scheme, the magnitude is represented by the displacement (the linearity) with the displacement of the origin, and the traces are drawn in an offset from the positive X-axis in the counterclockwise direction.

You can select one of the following three data sets to display the tag response value:

- a) Log/Phase
- b) Lin/Phase
- c) Real/Imag.

Figure 2-8 Data format - Polar format

2.6.3 Smith

The Smith chart format is used to display the impedance based on the DUT reflection measurement data.

You can select one of the following three data sets to display the tag response value:

- a) Log/Phase
- b) Lin/Phase
- c) Real/Imag.
- d) R+jX
- e) G+jB

Figure 2-9 Data format - Smith chart format

2.7 Scale

2.7.1 Auto Scale

The auto calibration function is used to automatically adjust each scale (scale / index and reference line), which will cause the trace to be displayed on the screen at the appropriate size for easy viewing.

(1) Single trace automatic calibration Steps:

auto calibration function.

2. Press the **Scale** button.

3. Click the Auto Scale ALL button.

2.7.2 Adjust the Cartesian Scale Manually

For Cartesian display formats, you can use the four parameters to manually adjust the scale.

Adjustable Features	Introduction	
Divisions	Defines the degree of division on the Y axis. You must use an even	
	number between 4 and 30. After setting, it is usually applied to all	
	traces of the channel that are displayed in any Cartesian format.	
Scale/Div	Defines the number of increments for each index on the Y axis. This	
	value applies only to work traces.	
Ref Position	Defines the position of the reference line. The position must be	
	specified using the value (the least significant value) starting from 0	
	on each of the sub-indexes on the Y-axis, up to the number of	
	divisions used (maximum effective value). This position applies only	
	to work traces.	
Ref Value	Defines the value corresponding to the reference line. Must be set on	
	the unit on the Y axis. The reference line value is only applied to the	
	working trace.	

Figure 2-10 Manual adjustment Cartesian scale

Steps:

2. Press the Scale button.

3. Select the need to adjust the specific characteristics of the corresponding function keys.

The function keys are shown in the following table:

Function Keys	Function
Divisions	Defines the degree of division on the Y axis
Scale/Div	Defines the number of increments for each index on the Y axis
Ref Position	Defines the position of the reference line
Ref Value	Defines the value corresponding to the reference line

2.7.3 Artificially Adjust the Polar Plot Smith Scale

Use the displacement (the outermost scale / Div) to manually adjust the Smith chart format or the polar coordinate format. As shown below:

2.7.4 Other Parameter Settings

(1) Electrical delay

The electrical delay function can add or remove a pseudo-depleted transmission line whose length varies with the receiver input. Use this function to increase the resolution of the phase measurement so that the linear phase offset can be measured. You can specify an electrical delay for each trace.

Steps:

2. Press the **Scale** button.

- 3. Click the Electrical delay button.
- 4. Enter the value via the panel input button.
- (2) Phase offset

The phase offset function may be used to add or subtract a predetermined value associated with the frequency of the incoming and outgoing traces. Use this function to simulate a phase shift that occurs after an event such as adding a cable.

Steps:

1.Press	Channel Next	or	Channel Prev	key	and	press	Trace Next	or
Trace Pre	to select th	e trac	ce to perform t	he aut	omatio	c calibra	tion function.	
2. Press	the Scale	D b	utton.					

- 3. Click the Phase offset button.
- 4. Enter the value via the panel input button.

2.8 Display

2.8.1 Channel Max

When multiple channels are used, the specific channel window on the screen can be maximized.

Steps:

1. Press Channel Next or Channel Prev key to select the channel to maximize its

window.

2. Press the **Channel Max** key to maximize the channel window.

3. Press the **Channel Max** button again to narrow the window to the previous size.

2.8.2 Trace Max

When multiple traces are displayed in the channel window, you can also maximize the particular trace displayed in the channel window.

Steps:

1.	Press	Cł	nannel N	lext	or	Channel Prev	key	and	press	Trace Next	or
Trac	e Prev) _t	o seleo	ct the	trace	e to maximize	the tra	ce.			
2. 1	Press th	ne (Trac	e Max) key	to maximize t	he trac	e disp	olay.		
3. I	Press th	ne (Trac	e Max) _{bu}	itton again to	reduce	the di	isplay to	the previous s	ize.

2.8.3 Trace Data Operations

This function is to select the trace measurement data and memory data and the two operations after the data display. For each trace that displays the measurement data, there is an additional trace called a storage trace for temporarily storing the measurement data. You can use storage traces to compare traces on the screen or perform complex data calculations between storage traces and measurement data.

Steps:

2. Press the Display button.

3. Click the Data-> Memory button to save the currently active trace data to memory.

4. Click the Data Math function button, click the corresponding function button, select the measurement trace data and memory data to calculate, including the following operations:

Function Button	Introduction
Data/Mem	The measurement data for the current trace is divided by the memory
	data, which is used to evaluate the ratio of the current measurement
	data to the memory data, such as the evaluation magnification, the
	attenuation factor, and so on.
Data*Mem	The measured data of the current trace is multiplied by the memory
	data.
Data-Mem	The measurement data for the current trace minus the memory data,
	which is often used to evaluate the vector error.
Data+Mem	The current trace of the measured data plus the memory data.
OFF	Turn off the trace data operation function.

5. Click the Display function button, click the corresponding function button, select the data type of the trace display, including the following data types:

Function Button	Introduction
Data	Only the measurement data of the trace is displayed, or the result of the
	measurement data and the memory data operation is displayed.
Memory	Only the memory trace data is displayed.
Data&Memory	Display the measurement data of the trace, or display the result of the
	measurement data and the memory data, and the memory trace data.
OFF	Turn off the measurement data, or the operation data, as well as the
	display of the memory trace data.

2.8.4 Title

This function allows you to assign a name to a channel and display the name on the screen. This function can be used to save or print the measurement results, and add the measurement results to the archive.

Steps:

Trace Prev to select the channel to which you want to add the marker.

2. Press the Display button.

3. Click the Edit Title Label function button, pop up the soft keyboard, enter the channel window title.

4. Press the <u>Enter</u> button.

5. Click the Title Label function button, function button in front of RBI "•", then display the window title, otherwise, do not display the window title.

2.8.5 Update

Turn off the update function of the on-screen display information to save the processing time required to update the display information in the analyzer, thus increasing the measurement speed.

Steps:

1. Press the Display button.

2. Click the Update button to switch its status to OFF, turn off the display of information updates, otherwise, open the display information updates. When the display message is updated, the "Update Off" message is displayed in the instrument status bar. As shown below:

Figure 2-13 Close the screen display information update

3 MEASURE THE CALIBRATION

3.1 Calibration Type Description

Calibration Type	Use the Standard	Corrected Error Factor	Measurement Parameters
No calibration	No	No	All parameters
Response calibration	 Open or short circuit Load (optional) Direct access Isolation 	 There are two error terms: Er Ed There are two error terms: Et Et Ex 	S11(reflection characteristic of port 1) S22(reflection characteristics of 2 ports) S21 (1-way transmission characteristic of 2-port) S12 (1-port 2-direction transmission characteristic)
All 1 port calibration	 Open Short circuit Load	There are three error terms: • Ed • Es • Er	S11(reflection characteristic of port 1) S22 (reflection characteristics of 2 ports)

Calibration	Use the Standard	Corrected Error	Measurement Parameters
Туре	Ose the Standard	Factor	Wedsurement I drameters
Single path		There are five error	1-2(\$12,\$22)
2 port		terms:	
calibration	• Open	• Et	01
	Short circuit	• Et	2-1(S21,S11)
	LoadPass through	• Ed • Es	
		• Er	
Full 2 port		There are 12 error	
calibration	• Open	terms:	
	Short circuit	 Ed1、Ed2 Ex21、Ex12 	\$11、\$21、\$12、\$22(All \$
	• Load	• Es1, Es2	parameters for 2 ports)
	 Pass through 	• El12、El21	
		• Et21、Et12	
		• Er1、Er2	

Note: The above calibration type, including all the calibration type, different types of equipment, calibration type is not exactly the same, please refer to the model of the instrument data sheet.

3.2 Calibration Status Query

3.2.1 Calibration Status of the Channel

The error correction execution status of each channel can be checked by the error correction status. The error correction status is indicated by the symbol located in the channel status bar below the window, and these symbols are shown in the following table.

Symbol	Error Calibration Status
Cor (Black	Error calibration: On (for all traces enabled)
background)	
Cor (Red on white)	Error calibration: On (for partial trace enabled)
(Red on white line)	Error calibration: On (no calibration data)
Off (red on white)	Error calibration: off
C? (Black and white)	Error correction: On (execution of interpolation, or IF bandwidth,
	power level, power range, scan time, scan delay, scan mode or
	scan type is different from when the calibration is performed.)

The channel calibration status is shown below:

Figure 3-1 Channel calibration status

3.2.2 Trace Status Check for Trace

Symbols	Calibration Type	
RO	Open circuit response calibration	
RS	Short circuit response calibration	
RT	Direct response calibration	
F1	All 1 port calibration	
OP	Single path 2 port calibration	
F2	Full 2 port calibration	

The calibration status of the trace is shown in the following figure:

Figure 3-2 Trace status of the trace

3.3 Calibration Process

3.3.1 Select the Calibration Parts

Before performing calibration, you need to select the calibration kit. If you are using a pre-defined calibration kit, you need to define it. If the type of connector used for the standard calibration kit has polarity (to distinguish between positive and negative), the standard category definition of the calibration kit needs to be changed according to the actual use criteria.

The instrument provides four sets of preset calibrators, Agilent's three: 85032B / E, 85033D / E, 85036B / E, 85032F, USER and a remote custom calibration CAL-F / MN-C.

Calibration Part	Basic Indicators
Туре	
85032B/E	DC to 6GHz, N, 50 Ω
85033D/E	30kHz to 9GHz,3.5mm,50Ω
85036B/E	30kHz to 3GHz,N,75Ω
85032F	DC to 9GHz,N,50Ω
85039B	DC to 3GHz,F,75Ω
CAL-F/MN-C	DC to 6GHz,N,50Ω
USER	Customize calibration parts

Steps:

6. Press Channel Next or Channel Prev key to select the channel to be calibrated.

7. Press the Cal button.

8. Click the Cal Kit function button to enter the Cal Kit function menu.

9. Press the button, move the cursor to the Cal Kit function button to

select, press the button, select the Cal Kit function button in front of RBI "•".

3.3.2 Calibration Part Parameter Editing

Because the calibration is a non-ideal device, there are certain indicators in itself, in order to improve the calibration accuracy, the calibration parameters of the instrument input instrument for the calculation of calibration data used. Calibration parameter. The parameter editing function is used to input the calibration parameters into the instrument.

Steps:

1. Press the Cal key.

2. Click the Cal Kit function button to select the calibration unit (see the "Selecting the Calibrator" section).

3. Click the Edit Cal Kit function button, enter the calibration parameter editing menu, select the parameters need to edit to edit.

3.3.3 Open-circuit Response Calibration

In open-circuit response calibration, the calibration data is measured by connecting the open-circuit calibrator to the desired test port, respectively. For the frequency response, these calibrations can effectively eliminate the reflection tracking error of the test device in the reflection test using the port. The error model is shown below:

Figure 3-3 Open-circuit response calibration (open-circuit response)

You can also use the load calibrator for isolation calibration during open-circuit response calibration. Isolation calibration will eliminate the directional error of the test device in the reflection test using the port. The error model is shown below:

Figure 3-4 Open-circuit response calibration (open-circuit response + isolation)

Steps:

1. Press Channel Next or Channel Prev key to select the channel to be calibrated.

2. Press the Cal button.

3. Click the Cal Kit function button to select the calibration unit (see the "Selecting Calibration Parts" section).

4. Click the Calibrate function button.

5. Click the Response (Open) function button.

6. Click the Select Port function button, select the calibration port, each click the function button for 1 (S11), 2 (S22) switch.

7. The correct connection calibration parts. As shown below:

Figure 3-5 Open Response Calibration - DUT Connection Diagram

8. Click the Open function button to start the open calibration process, and pop-up

prompt window, and so after the prompt window is closed, the calibration is completed, Open function button in front of RBI "•".

9. If you must perform a quarantine calibration using the load calibrator, follow the steps below.

10. Connect the load calibrator to the selected test port, as shown above.

11. Click the Load (Optional) button, the load calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Load (Optional) function button in front of RBI "•".

12. Click the Done function button, save the calibration data, complete the calibration.

3.3.4 Short-circuit Response Calibration

Steps:

1. Press Channel Next or Channel Prev key to select the channel to be calibrated.

2. Press the Cal button.

3. Click the Cal Kit function button to select the calibration unit (see the "Selecting Calibration Parts" section).

4. Click the Calibrate function button.

5. Click the Response (Short) function button.

6. Click the Select Port function button, select the calibration port, each click the function button for 1 (S11), 2 (S22) switch.

7. The correct connection calibration parts. As shown below:

Figure 3-6 Short-circuit response calibration - DUT connection diagram

8. Click the Short function button to start the short calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Close function button in front of RBI "•".

9. If you must perform a quarantine calibration using the load calibrator, follow the steps below.

10. Connect the load calibrator to the selected test port, as shown above.

11. Click the Load (Optional) button, the load calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Load (Optional) function button in front of RBI "•".

12. Click the Done function button, save the calibration data, complete the calibration.

3.3.5 Transmission Response Calibration

In the pass-through response calibration, the calibration data is measured by connecting the pass-through calibration to the desired test port. This calibration

51 / 145

method can effectively eliminate the frequency response transmission tracking error of the test device in the transmission test using the port. The error model is shown below:

Et: Transmittion Tracking Error

In the pass-through calibration process, you can also use the load calibrator for isolation calibration. Isolation calibration will eliminate the isolation error (crosstalk error) of the test device in the transmission test using this port. The error model is shown below:

Figure 3-8 Transmission Response Calibration (Direct Response + Isolation)

1. Press Channel Next or Channel Prev key to select the channel to be calibrated.

2. Press the Cal button.

3. Click the Cal Kit function button to select the calibration unit (see the "Selecting Calibration Parts" section).

4. Click the Calibrate function button.

5. Click the Response (Thru) function button.

6. Click the Select Port function button, select the calibration port, each click the function button for 1-2(S12), 2-1 (S21) switch.

7. The correct connection calibration parts. As shown below:

Figure 3-9 Transmission Response Calibration - DUT Connection Diagram

8. Click the Thru function button, start the calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Thru function button in front of RBI "•".

9. If you must perform a quarantine calibration using the load calibrator, follow the steps below.

10. Connect the load calibrator to the selected test port. As shown below:

Figure 3-10 Transmission Response Calibration (Isolation Calibration) - DUT Connection Diagram

11. Click the Isolation (Optional) function button to start the calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration

is completed, Isolation (Optional) function button in front of RBI "•".

12. Click the Done function button, save the calibration data, complete the calibration.

3.3.6 All 1 Port Calibration

All 1-port calibration means that the calibration data is calibrated by connecting the open calibration, short-circuit calibrator, and load calibrator to the test port. This calibration method can effectively eliminate the frequency response of the test device in the reflection test using the port, the tracking error, the directional error, and the source matching error. As shown below:

Steps:

1. Press Channel Next or Channel Prev key to select the channel to be calibrated.

2. Press the Cal button.

3. Click the Cal Kit function button to select the calibration unit (see the "Selecting Calibration Parts" section).

4. Click the Calibrate function button.

5. Click the Full 1-Port Cal function button.

6. Click the Select Port function button, select the calibration port, each click the function button for 1 (S11), 2 (S22) switch.

7. The correct connection calibration parts, according to the order of calibration in turn connected Open, Short, Load calibration parts. As shown below:

8. Click the Open function button, open the calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Open function button in front of RBI "•".

9. Click the Short function button, short circuit calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Short function button in front of RBI "•".

10. Click the Load button, the load calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Load function button in front of RBI "•".

11. Click the Done function button, save the calibration data, complete the calibration.

3.3.7 Single Channel 2 Port Calibration

Steps:

1. Press Channel Next or Channel Prev key to select the channel to be calibrated.

calibrateu.

2. Press the Cal button.

3. Click the Cal Kit function button to select the calibration unit (see the "Selecting Calibration Parts" section).

4. Click the Calibrate function button.

5. Click the One Path 2-Port Cal function button.

6. Click the Select Port function button, select the calibration port, press the function button for each 1-2 (S12 S22), 2-1 (S21 S11) switch.

7. The correct connection calibration parts, according to the order of calibration in turn connected Open, Short, Load, Thru calibration parts. As shown below:

Figure 3-13 Full 2-port calibration - DUT connection diagram

8. Click the Open function button, open the road calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Open function button in front of RBI "•".

9. Click the Short function button, short circuit calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Short function button in front of RBI "•".

10. Click the Load button, the load calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Load function button in front of RBI "•".

11. Click the Thru function button, start the calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Thru function button in front of RBI "•".

If you must perform a quarantine calibration using the load calibrator, see the procedure for "Transfer Response Calibration".

12. Click the Done function button, save the calibration data, complete the calibration.

3.3.8 All 2-port Calibration

In full 2-port calibration, the calibration data is measured by connecting the open

calibration, short-circuit alignment, or load calibrator to the desired test port (or between the two ports). This calibration method can effectively eliminate the directional error, crosstalk, source matching error, frequency response reflection tracking error, and frequency response transmission tracking error in the transmission or reflection test of these ports using these ports. This calibration method performs the measurement with the highest possible accuracy. A total of twelve error terms are used in the calibration, six in the forward and reverse directions, as shown in the following figure:

 1A
 S21A
 D2
 Et
 OS21M
 Er: Reflection Tracking Error

 1A
 S22A
 EI
 Et: Transmittion Tracking Error

 1A
 S22A
 EI
 Et: Transmittion Tracking Error

 Et: Solation Error (Crosstalk Error)
 EI: Load Matching Error

 Reflectio
 EI: Load Matching Error

Figure 3-14 All 2 port calibration - 12 error

Steps:

Ed

S11M

1. Press Channel Next or Channel Prev key to select the channel to be

calibrated.

2. Press the Cal button.

bi

3. Click the Cal Kit function button to select the calibration unit (see the "Selecting Calibration Parts" section).

4. Click the Calibrate function button.

5. Click the Full 2-Port Cal function button.

6. Connect the calibration parts correctly, and connect Port1 Open, Port1 Short, Port1 Load, Port2 Open, Port2 Short, Port2 Load, Thru calibrator according to the calibration order. As shown below:

Figure 3-15 Full 2-port calibration - Calibration section connection diagram

7. Click the Port1 Open function button, open the calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Port1 Open function button in front of RBI "•".

8. Click the Port1 Short function button, short circuit calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Port1 Short function button in front of RBI "•".

9. Click the Port1 Load function button, the load calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Port1 Load function button in front of RBI "•".

10. Click the Port2 Open function button, open the calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Port2 Open function button in front of RBI "•".

11. Click the Port2 Short function button, short circuit calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Port2 Short function button in front of RBI "•".

12. Click the Port2 Load function button, load the calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Port2 Load function button in front of RBI "•".

13. Click the Port1-2 Thru function button, start the calibration process, and pop-up prompt window, and so after the prompt window is closed, the calibration is completed, Port1-2 Thru function button in front of RBI "•".

If you must perform a quarantine calibration using the load calibrator, see the procedure for "Transfer Response Calibration".

14. Click the Done function button, save the calibration data, complete the calibration.

【Description】: T5113A / T5113H no full dual port calibration.

4 MEASURE THE TRIGGER

4.1 Select the Trigger Source

When the trigger source detects a trigger signal that has occurred, the channel is scanned or measured. Performing measurements on each channel does not depend on whether the channel is displayed or not. Activated channels can be measured even if they are not displayed. For each channel, only the excitation port of the parameter that needs to be updated to display the trace is scanned.

The trigger source will generate a prompt to initiate the measurement process. There are four types of trigger sources to choose from, as shown in the following table:

Trigger Source	Description	
Internal	Use the continuous signal generated by the firmware as the trigger	
	source. The trigger will be sent immediately after each	
	measurement is completed.	
External	The external signal is used as the trigger source from the Trig input	
	(BNC).	
Manual	Press the function button to generate the trigger signal.	
Bus	Trigger via GPIB / LAN / USB.	

Steps:

1. Press the Trigger key.

2. Click the Trigger Source button.

3. Click the function button corresponding to the desired trigger source, and select the trigger source function button.

4.2 Set the Trigger Mode

Steps: 1. Press Channel Next or Channel Prev key to select the channel to set the

59 / 145

trigger mode.

2. Press the Trigger button.

3. Click the function button corresponding to the desired trigger mode. Click the Hold All Channels function button. After the completion of the Hold function button, press the "Continuous All Channels" button. After the execution of the Continuous All Channels function button, the Continuous function is enabled. Button before the RBI " \bullet ". The function buttons corresponding to the desired trigger mode are described in the following table:

Function Button	Description
Hold	Set the working channel trigger mode to hold the scan mode
Single	Set the working channel trigger mode to single scan mode
Continuous	Set the working channel trigger mode to continuous scan mode
Hold All Channels	Set all channel trigger modes to hold scan mode
Continuous All Channels	Set all channel trigger modes to continuous scan mode

4. Repeat the above steps to set the trigger mode for each channel.

4.3 Trigger Control

Controls the triggering in the scan, aborts the scanning process, and restarts the scan.

Steps:

1. Press the Trigger button.

2. Click the Restart button to stop the scanning process and start scanning again.

5 ANALYSIS OF MEASUREMENT RESULTS

5.1 Markers

5.1.1 Marker Overview

Marker can be used for the following aspects:

- 1) The measured value is read as a numeric data (The relative value of the absolute value or the reference point).
- 2) Move the marker to a specific point on the trace line (Marker search).
- 3) Analyze trace data to determine specific parameters.
- 4) Used marker values to change incentives(Scanned area)and scale(Reference line value)

[Specification]: The device can display up to 16 markers. These include reference markers for each trace line. Each marker has an incentive value (Cartesian coordinates display values on the X -axis in the format) and a response value (Rectangular coordinates display the value of the Y-axis in the format).Smith chart and polar coordinates each have two marker response values (Logarithmic amplitude and phase).

2.1.2 Marker Read

In the Cartesian display format, the marker response value is always the same as the Y-axis data format. Polar and Smith charts can be used to mark the response values (two values: primary and secondary) in a variety of types. From which you can select a format that is in the format of the data, polar coordinates and Smith chart data formats are described in the following table:

Data Format	Responder			
Data Format	Principal Value	Auxiliary Value		
Smith - Lin / Phase	Linear Amplitude	Phase		
Smith - Log / Phase	Logarithmic Amplitude	Phase		
Smith - Real / Imag	Real Component	Imaginary Component		
Smith - R + jX	Resistance	Reactance		

Smith - G + jB	Conductance	Charge
Polar - Lin / Phase	Linear Amplitude	Phase
Polar - Log / Phase	Logarithmic Amplitude	Phase
Polar - Real / Imag	Real Component	Imaginary Component

5.1.3 Marker Operation

5.1.3.1 Marker Adding

Steps:

- Press Channel Next or Channel Prev to select the channel you want to set.
 Press Trace Next or Trace Prev to select the trace you want to set.
- 3. Press the Marker.
- 4. Click the Add Marker function button and open the data entry dialog box.
- 5. In the dialog box, enter the need to stimulate the value, as shown below:

Figure 5-1 Add Marker Dialog Box

6. After the input is complete, press

62 / 145

7. According to steps 4~6 operation, increase the number of marker.

5.1.3.2 Marker Deleting

Steps:

- 3. Press the Marker
- 4. Click the Remove Marker function button, delete the last marker.
- 5. In step 4, delete the marker.
- 6. If you delete all the marker, click the Remove All function button, delete all the marker.

5.1.3.3 Reference Marker

Activate the reference marker, which converts the marker reading to the relative value of the reference marker, as shown in the following figure:

Steps:

- 1. Press the Marker.
- 2. Click the Reference Marker function button.
- 3. Press Letter to set its status to ON, then activate the reference mark; set its status to OFF, then turn off the reference mark.

5.1.3.4 Choose to Modify the Marker

Steps:

- Press Channel Next or Channel Prev to select the channel you want to set.
 Press Trace Next or Trace Prev to select the trace you want to set.
- 3. Press the Marker.
- 4. Click the Select button.
- 5. Select the need to modify the marker (Marker1...Marker15, Ref Marker).
- 6. Press to bring up the data entry dialog box.
- 7. In the dialog box, enter the need to stimulate the value, as shown below:

💭 T4 Net	work Analyzer 100	MHz-4000MHz						
Trace/Ch	annel Stimulus	Response Display Calibr	ation Markers Analysis S	Save/Recall System				
Marker 2	2.492471149G					• • • •	ок х	Select Marker 2
Tr1 S11 I	og Mag 10.00dB/	0.000dB						Marker 1
30.00	1 2.0734000GHz 2 2.4924711GHz 3 2.0500000GHz 4 2.0500000GHz 5 2.0578000GHz	Bb0000.0 Bb0000.0 Bb0000.0 Bb0000.0 Bb0000.0 Bb0000.0						Marker2
20.00								Marker 3
10.00								Marker 4
0.000				<u>N</u>	2			Marker 5
-10.00				51				Marker 6
-20.00								Marker 7
20.00								Marker 8
-30.00								Marker 9
-40.00								Ref Marker
-50.00								Marker 10
-60.00	100MHz				A		4GHz	Marker 11
CH1 OFF	Start 100MHz	201	IFBW 10kHz	0.00	iBm	S	top 4GHz	~
2017-8-23	15:05					Meas	Connecting	

Dialog 5-3 Choose to Modify the Marker

5.1.4 Marker Search

Use the marker search function to search for marker locations that match the specified values. The instrument provides the following search methods:

- 1) Maximum search
- 2) Minimum search

- 3) Target value search
 - a) The target closet to the mark position
 - b) The left target closet to the marker position
 - c) The right side of the target closet to the marker position
- 4) Peak search
 - a) Maximum peak (positive peak), minimum peak (negative peak)
 - b) The left side of the peak closet to the marker position
 - c) The right side of the peak closet to the marker position

5.1.4.1 Search the Maximum Value

Steps:

1.	Press	Channel Next	or	Channel Prev	and	Trace Next	or	Trace Prev
	to sele	ect the trace to a	sear	ch for.				

- 2. Press the Marker Search
- 3. Click the Maximum function button, Marker tag points automatically moved to the maximum measured value, as shown below:

5.1.4.2 Search the Minimum Value

Steps:

- 1. Press Channel Next or Channel Prev and Trace Next or Trace Prev to select the trace to search for.
- 2. Press the Marker Search
- 3. Click the Minimum function button, Marker tag points automatically moved to the minimum measured value, as shown below:

Note: when the data format is a Smith chart or a polar coordinate format, only the primary response value is searched.

5.1.4.3 Search Target Value

Use the target search function to move the marker to a point with the target measurement .The target is a point with a specific measure on the trace. Depending on the type of transfer of the target, the target can be divided into two categories, as follows:

Target Transition	Description	
Desitive Tronsfor	The value of the target is greater than the next	
Positive Transfer	measured value(on the left)	
No. dia Tang	The target value is less than the next measured	
Negative Transfer	value(on the left)	
Both	Positive transfer or negative transfer	

Positive Transfer O Negative Transfer

Figure 5-6 Target Transfer Category

Target search category:

Search Category	Description
Search Target	Move the marker to the target value
	Searches from the current marker position to the smaller
Search Left	stimulus value, and then moves the marker to the first
	target encountered
	Searches from the current marker position to the
Search Right	direction of the larger stimulus value, and then moves
	the marker to the first target encountered

Steps:

- 1. Press <u>Channel Next</u> or <u>Channel Prev</u> and <u>Trace Next</u> or <u>Trace Prev</u> to select the trace to search for.
- 2. Press the Marker Search
- 3. Click the Target Transition button to set the destination transfer category. "Positive" means forward search," Negative" means negative search," Both" means positive and negative search.
- 4. Click the Target Value function button, pop-up data input dialog box, enter the target value in the dialog box, as shown below, then press
- 5. Click the Search Target button to search for the target value.
- 6. Click the Search Target Left function button, search the left to set the target value. And then click the function button, continue to search the left.
- 7. Click the Search Target Right function button, search the right to set the target value. And then click the function button, continue to search the right.

💆 T4 Network Analyzer 100MHz-4000MHz									
Trace/Ch	annel Stimulus	s Response Di	isplay Calibrati	on Markers Analysis S	Save/Recall System				
Target '	Value 0						▲ ▼	▲ OK x	Search Target
Tr1 S11 L 40.00	.og Mag 10.00d	B/ 0.000dB							Search Target
30.00	1 2.27052540 2 2.49247110 3 2.05000000 4 2.05000000	GHz GHz GHz GHz	0.0000dB 0.0000dB 0.0000dB 0.0000dB						Search Target Left
20.00	5 1.01335710	GHz	0.0000dB						Search Target Right
10.00									Target Value 0dB
0.000			<u>∆</u> 5			<u>A</u>			Target Line
-10.00									ON Clear All Target Lines
-20.00									
-30.00									
-40.00									
-50.00									
-00.00	100MHz							4GHz	
CH1 OFF	Start 100MHz		201	IFBW 10kHz	0.00	dBm		Stop 4GHz	
2017-8-23	15:36						 	Meas Connecting	

Figure 5-8 Target Value Data Entry Dialog Box

5.1.4.4 Search Peak

Use the peak search function to move the marker to the peak on the trace.

(1) Peak Polarity

Peak Polarity	Description
	The measured value is greater than the
Positive Peak	measured value of any one of the measuring
	points(peak polarity: positive)
	The measured value is less than the measured
Negative Peak	value of any one of the measuring points(peak
	polarity: negative)
Both	Positive or negative peak

As shown below:

- (2) The peak drift value is the smaller value of the difference between the adjacent peak of the opposite polarity and the measured value.
- (3) Peak search category, as shown the following table:

Search Category	Description
Search Peak	When the peak polarity is "Positive", "Both"

	(positive and negative), move the mark to the
	maximum peak. When the peak polarity is
	"Negative", the marker is moved to the minimum
	peak.
	Searches from the current marker position to the
Search Left	smaller stimulus value, and then moves the marker
	to the first peak encountered.
	Searches from the current marker position to the
Search Right	larger stimulus value, and then moves the marker to
	the first peak encountered.

As shown below:

Figure 5-10 Peak Search Category

Steps:

1. Press Channel Next or Channel Prev and Trace Next or Trace Prev to select the trace to search for.

2. Press the Marker Search

- 3. Click Peak function button.
- Click the Peak Excursion function button to set the peak drift value .Pop-up data input dialog box, enter the target value in the dialog box, as shown below, then, press

T4 Network Analyz	zer 100MHz-4000MHz					_ 0 %
Trace/Channel Stim	ulus Response Display	Calibration Markers Ana	alysis Save/Recall System			
Peak Excursion 50p)				• • OK	x Search Peak Marker 1
Tr1 S11 Log Mag 10.	00dB/ 0.000dB					Search Peak
40.00 1 2.270 2 2.492 3 2.050 30.00 4 2.050	IS254GHz 0.000 I4711GHz 0.000 I0000GHz 0.000 I0000GHz 0.000	0d8 0d8 0d8				Search Peak Left
20.00	13571GHz 0.000	0dB				Search Peak Right
10.00						Peak Excursion 50pdB
0.000			Δ •	<u>∆</u> 2		Positive
-10.00						
-20.00						
-30.00						
-40.00						
-50.00				_		
100MHz						IGHz
CH1 CH1 Start 100M	HZ	201 IFBW	0.0 UKH2	Jarm	Stop	4GHZ
2017-8-23 15:41					Meas Conr	recting

Figure 5-11 Peak Drift Value Data Entry Dialog Box

- 5. Click the Peak Polarity function button, select the search category. "Positive" means positive peak search, "Negative" means negative peak search, "Both" means positive and negative peak search.
- 6. Click the Search Peak function button to search for peaks.
- 7. Click the Search Peak Left function button, search the peak to the left. And then click the function button, continue to search the left.
- 8. Click the Search Peak Right function button, search the peak to the right. And then click the function button, continue to search the right.

5.1.4.5 Search Tracking

The search tracking function sets the search to repeat the search every time a scan is performed, even if the execution key for the search (maximum, minimum, peak, and target) is not pressed. This function makes it easy to observe the measurement results, such as the Marker Search.

1. Click the Tracking function button, each click once, turn ON, OFF switch once, if the state is set to ON, said to open the search tracking function; set to OFF, that turn off the search tracking function.

5.1.4.6 Bandwidth Search

The bandwidth search determines the function of the trace bandwidth, the center frequency, the cutoff point (the higher frequency side and the lower frequency side),

Q, and the insertion loss according to the position of the work mark. The parameters defined for the bandwidth search are defined below.

Figure 5-12 Bandwidth Search Parameter Definition--- Bandpass Filter

Figure 5-12 Bandwidth Search Parameter Definition---Bander Filter

The definition of the parameters defined for the bandwidth search is shown in the following table:

Bandwidth Parameters	Description
	When performing a bandwidth search, the measured
Insertion loss	valued at the job marker location (Search Ref To set
	to Marker) or the maximum value (Search Ref To set

	to Max)
Lower frequency cutoff	The lowest frequency among the two measurement
point	points separated by the defined bandwidth value
	from the work mark position
Higher frequency cutoff	The highest frequency among the two measurement
point	points separated by the defined bandwidth value
	from the work mark position
Center frequency	The frequency between the lower frequency cutoff
	point (high+ low)/2
Bandwidth	The frequency difference between the higher
	frequency cutoff point and the lower frequency
	cutoff point (high-low)
Q	The center frequency is divided by the bandwidth
	obtained by the value (cent/BW)

- 1. Press Channel Next or Channel Prev and Trace Next or Trace Prev or to select the trace to search for.
- 2. Press Marker Search
- 3. Click Bandwidth Search function button.
- 4. Click the Type function button, select the filter type, select Bandpass to measure the band-pass filter, select Notch to measure the band-stop filter (limiter).
- 5. Press or *E*, return to the parent Bandwidth Search menu.
- 6. Click the Search Ref To button to select the location of the marker for the bandwidth search. When Marker is selected, the currently active Marker is used as the search mark point. When Max is selected, the maximum value of the current trace is used as the search mark point. The response value of this marker is used as the insertion loss in the bandwidth search.

Click the Bandwidth Value function button, pop-up bandwidth value data input dialog box, enter the bandwidth value in the dialog box, as shown below, then, press Enter.

💭 T4 Net	twork Analyzer 1	00MHz-4000MH	łz						
Trace/Ch	annel Stimulus	Response Di	splay Calibrat	ion Markers Analysis Sav	/e/Recall System	n			
Band	width Value <mark>-3</mark>						×	• ок х	< Bandwidth Search
Tr1 S11 40.00	Log Mag 10.00d	B/ 0.000dB	0.000048						Bandwidth Search OFF
30.00	2 2.49247110 3 2.0500000 4 2.0500000	SHZ SHZ SHZ	0.0000dB 0.0000dB 0.0000dB						Type Notch
20.00	5 1,01335710	SHz	0.0000dB						Search Ref To Max
10.00									Bandwidth Value -3dB
10.00					1				
0.000			∆ 5		Å	∆ 2			
-10.00									
-20.00									
-30.00									
-40.00									
-50.00									
-60.00	100MHz		Δ					4GHz	
CH1 OFF	Start 100MHz		201	IFBW 10kHz	0.0	00dBm		Stop 4GHz	
2017-8-23	8 15:44							Meas Connecting	

Figure 5-14 Bandwidth Search--- Bandwidth Value Data Entry Dialog Box

8. Click the Bandwidth Search function button, the bandwidth search measurement. As shown below:

Figure 5-15 Bandwidth Search for Measurement Results

5.1.4.7 Search Range

Use the tag search function to set the partial scan range to the search target (partial search function) and the entire search range. For some search functions.

Steps:

- 1. Press Channel Next or Channel Prev and Trace Next or Trace Prev or to select the trace to search for.
- 2. Press Marker Search
- 3. Click the Search Start button, pop-up data input dialog box, enter the search range of the start value.

Note: the input value is greater than the current channel start value.

4. Click the Search Stop function button, pop-up data input dialog box, enter the search range of the termination value.

Note: the input value is less than the current channel termination value.

5. Click the Search Range function button to turn ON and OFF each time it is clicked. When the status is ON, the search range functions is turned on. When the status is OFF, the search range functions is turned off.

5.1.4.8 Search Range Coupling

The search range coupling indicates the search when the trace in the channel is coupled.

Steps:

1. Press Channel Next or Channel Prev and Trace Next or Trace Prev or to select the trace to search for.

2. Press Marker Search

3. Click the Couple function button to turn ON and OFF each time it is clicked. When the status is ON, the search range functions is turned on. When the status is OFF, the search range functions is turned off.

5.1.5 Marker Function

5.1.5.1 Marker Transfer Setting

(A) Use the Marker value to set the scan range

Steps:

- 1. In the need to set the scope of the channel window, the work of the work mark on the traces places in the new range (minimum, maximum or center value) corresponding to the location.
- 2. Press Marker Fctn
- 3. Click the Marker-> Start button to set the start value of the scan range to the stimulus value of the work mark on the current job trace. As shown below:

Figure 5-16 Marker Transfer --- Marker -> Start Function

4. Click the Marker -> Stop function button to set the sweep range's stop value to the stimulus value for the work mark on the current job trace. As shown below:

5. Click the Marker -> Center function button to set the center value of the scan range to the value of the work mark on the current job trace. As shown below:

Figure 5-18 Marker Transfer --- Marker -> Center Function

Note: if the reference mark is activated and the stimulus value of the work mark is represented by the value relative to the reference mark, the absolute stimulus value is used to set the new sweep range.

(B) Use the marker to set the reference line value

When using Cartesian display format, you can change the value of the reference line, so that it is equal to the response value of the work mark on the job trace.

Steps:

- 1. Place the work mark on the job trace at the position corresponding to the new reference line value.
- 2. Press Marker Fctn
- 3. Click the Marker -> Reference button to change the value of the reference line to the tag response value.

Note: if the reference mark has been activated and the stimulus value of the work mark is represented by the value relative to the reference mark, the absolute reference value will be set using the absolute stimulus value.

(C) Use the mark to set the electrical delay

Steps:

- 1. Press Channel Next or Channel Prev and press Trace Next or Trace Prev to select the trace to set the electrical delay trace.
- 2. Place the marker in the appropriate position.
- 3. Press Marker Fctn
- 4. Click the Marker -> Delay button to set the group delay value of the marker to the Scale / Electrical Delay.

Notes: The value of the markers is measured by the group delay, which means that the function is valid when Format of the trace where the maker is located is set to Group Delay. If the reference mark is activated and the value of the work mark is relative, the value of the reference mark indicates that the transfer setting value will use the absolute value.

5.1.5.2 Marker Coupling Set

If you close the coupling, you can set and move the markers individually for each trace; if open, the trace is set and moved for all traces in the channel. The method of setting the coupling state is as follows:

- 1. Press Channel Next or Channel Prev to activate the channel to which the tag is to be set.
- 2. Press Marker Fctn

3. Click the Couple function button, once every click, turn ON, OFF switch once, when its state is set to ON, that open the coupling; when its state is set to OFF, then close the coupling.

5.1.5.3 List the Tag Values for All Channels

To operate this function, you can list all the tag values in all channels on the screen.

Steps:

- 1. Press Marker Fctn
- 2. Click the Marker Table function key, once every click, then ON, OFF switch once, when set to ON, then open the tag table, display all the channel all the tag values; when set to OFF, the tag table is closed and the display of all tag values in all channels is turned off

5.1.5.4 Marker Statistics

The Marker Statistical function is used to determine the statistics of the traces, such as span, mean, standard deviation, and peak-to-peak. The definition of statistical data elements as shown below, can be in the entire range of traces of statistics, can also be between a two Marker statistics.

Statistical Data Element	Description
Span	The span between markers 1 and 2 (which can be set to any

	other two markers)						
	$\frac{\sum_{i=1}^{n} x_{i}}{n}$						
mean	(n:the number of points; $\mathbf{x}_{\mathbf{i}}$:the measured value at the i-th						
	measurement point)						
s.dev	$\sqrt{\frac{\sum_{i=1}^{n}(x_{i}-mean)^{2}}{n-1}}$						
	(n:the number of points; \boldsymbol{x}_{i} :the measured value at the i-th						
	measurement point; mean: average value)						
р-р	Max-Min (Max: maximum measured value; Min: minimum						
	measured value)						

- 1. Press Channel Next or Channel Prev and press Trace Next or Trace Prev to select the trace to set the electrical delay trace .
- 2. Press Marker Fctn
- 3. Click the Statistics function button, enter the marker statistics function menu.
- 4. Click the Statistics Start button and select marker to set the start marker for the statistics range.
- 5. Click the Statistics Stop button and select marker to set the stop marker for the statistics range.
- 6. Press or to return to the superior function menu Statistics.
- 7. Click the Statistics Range function button, once every click, turn ON, OFF switch once, when its state is set to ON, then open the statistical range; when its state is set to OFF, then close the statistical range.
- 8. Click the Statistics function button, each click once, turn ON, OFF switch once, when its state is set to ON, then statistics; when its state is set to OFF, then turn off the statistics.

5.1.5.5 Display the Mark Point Values For All Traces

When there are multiple traces in the trace window, the Markers points on all traces are displayed.

Steps:

- 1. Press Channel Next or Channel Prev to activate the channel you want to set.
- 2. Press Marker Fctn
- 3. Click the Annotation Options button.
- 4. Click the Active Only function button, the function button in front of the RBI "•" that only show the current activation of all the Markers value, the function button in front of no RBI "•" shows all the traces of the trace window all the Marker value.

5.1.5.6 Display Position of the Marker Value If you have a Marker, you can adjust the Marker's display position.

Steps:

- 1. Press Channel Next or Channel Prev to activate the channel you want to set.
- 2. Press Marker Fctn
- 3. Click the Annotation Options button.
- 4. Click the Data X Position function button, pop-up data input dialog box, enter the X axis percentage $(0 \sim 100)$, set the horizontal display position.
- 5. Click the Data Y Position function button, pop-up data input dialog box, enter the Y axis percentage $(0 \sim 100)$, set the vertical display position.

Note: if there are multiple traces in a window, the position of the marker is displayed in the current trace window only when the first trace is activated.

5.2 Limit Test

The use of the limit test function allows the limit line to be set for each trace and then the pass / fail judgment of the measurement result.

Limit test is based on the limit table set the limit line to Pass, Fail to determine the function.

In the limit test, if the upper limit or lower limit of the limit line indication is not exceeded, the result of the judgment is qualified for all the measurement points on the trace. The measurement point within the excitation range where the limit line is not set is judged as acceptable.

[Description]: Passed / Failed to determine the target is limited to the measurement point.

Define the limit line by defining a limit table, limit the table including the specified start excitation value, the termination stimulus, the start response value, the stop response, and the type (lower / upper limit). The limit table is as follows:

	туре	Begin Stimulus	End Stimulus	Begin Response	End Response
1	MAX	880.0000000 MHz	900.0000000 MHz	–48 dB	–48 dB
2	мах	937.0000000 MHz	961.0000000 MHz	2 dB	2 dB
3	MIN	937.0000000 MHz	961.0000000 MHz	–5 dB	–5 dB
4	мах	982.0000000 MHz	1.000000000 GHz	–32 dB	–32 dB
5	OFF	1.010000000 GHz	1.030000000 GHz	–48 dB	–48 dB
6	•				

Figure 5-21 Limit Table

Limit table of the failed parameters meaning table:

Field Parameter	Description
	OFF: limit test does not use segmentation
Туре	MIN: specifies the segment where the minimum value is
	located.
	MAX: specifies the segment where the maximum value is
	located
Begin Stimulus	specifies the starting point for the stimulus value on the limit
	line
End Stimulus	specifies the end of the stimulus value for the limit line
Begin Response	specifies the starting point for the limit line response value
End Response	specifies the end of the limit line response value

Note:

- 1. You can define a limit line, the limit line can be free to overlap the other limit line excitation range.
- 2. Define a limit line of the same type as the second limit line, and the second limit line of the excitation range and the first limit line overlap, which will

lead to the same measurement point at two or more limits value. In this case, the limit values to be used in the limit test are defined as follows:

A) When the type of two or more limit values is set to the maximum value (MAX), the minimum limit value is used as the maximum value.

B) When the type of two or more limit values is set to the minimum value (MIN), the maximum limit value is used as the minimum value.

When the limit test is in progress, the unacceptable measurement point is displayed on the screen in red, and the result of the pass / fail judgment of the trace based on the result of each measurement point is displayed (if one or more measurement points on the trace Unqualified, the judgment result is unqualified). As shown below:

Figure 5 22 Limit test schematic

In addition to observing the screen, the buzzer can also be sent by the buzzer to determine the results.

5.2.1 Limit Table Editing

Limit table editing, including add, delete, modify, clear, save, restore and other operations.

- 2. press Analysis.
- 3. Click the Limit Test button.
- 4. click the Edit Limit Line function button, enter the limit table editing status, as shown below:

Figure 5 23 Limit table editing

5. the operation of the function button to limit the table operation, the function buttons as described in the following table:

Function Button	Description
Delete	Delete the limit table where the cursor is located
Add	Add a row at the end of the limit table
Edit	Enter the limit table edit status
Clear Limit Table	Empty the entire limit table
Save Limit Table	Save the limit table as a file. Save the limit table as a file,
	extension: *. Lim, you can call it at any time on the screen and
	use it. You can use this text editor to open and edit.
Restore Limit Table	Restores the limit table from the file

Note: Press front panel of the instrument to switch the control focus from the Limit Table edit status to the function menu operating status.

5.2.2 Limit Line Offset

By adding a specific offset to the limit value, you can adjust the limit line.

- 1. Press Channel Next or Channel Prev and press Trace Next or Trace Prev to select the trace to use the limit test function.
- 2. Press Analysis
- 3. Click the Limit Test button.
- 4. Click the Limit Line Test function button to enter the limit line offset function menu, enter the Stimulus Offset, and Response Offset, add the amplitude offset equal to the search value of the job marker Marker-> Response Ofs. The meaning of each parameter is as follows:

Parameter	Description
Stimulus Offset	Add a certain offset to the stimulus value for the entire segment
	in the limit table. (Excitation Offset)
Response Offset	Add a certain offset to the response value of the entire segment
	in the limit table. (Amplitude offset)
Marker->	Adds an amplitude offset equal to the search value of the work
Response Ofs.	marker. The current setting value of the amplitude offset can be
	confirmed by pressing Amplitude Offset. (Mark amplitude offset)

Figure 5-24 Limit Line Offset - Excitation Offset

Figure 5-25 Limit Line Offset - Response Offset

5.2.3 Turn ON / OFF Limit Test

- 1. Limit table editing. <Reference limit table edit section>
- 2. The limit line offset editing. <Reference limit line offset>

- 3. Click the Limit Line function button, once every click, turn ON, OFF switch once, when its state is set to ON, then the definition of the limit line; when its state is set to OFF, then hide the definition of the limit line.
- 4. Click the Fail Sign button, turn ON and OFF each time it is clicked. When the status is set to ON, the channel Fail / Pass test result is displayed. When the status is set to OFF, then hidden channel test results display.
- 5. Click the Limit Test function button, each click once, turn ON, OFF switch once, when its state is set to ON, then test; when its state is set to OFF, then stop the test.

5.3 Ripple Test Ripple Test

According to the ripple limit set by the ripple limit table, evaluate whether the test result is qualified or not. You can specify up to 12 bands to allow each band to be tested.

If the ripple value specified by the fluctuation limit is not exceeded by any measurement point on the trace, the ripple test will determine that the measurement is "Pass"; otherwise, the determination is judged as "Fail". For measurements that are not specified in the range of excitation limits, the test will determine that the measurement is "Pass" and "Fail". The corresponding measurement point will be indicated in red on the screen. The trace test results will be indicated at the top right of the graph. The result of each trace will be displayed as "Ripln: Pass" (ripple n: pass) or "Ripln: Fail" (ripple n: fail). N indicates the trace number. If the test result display (Ripple Value) is turned on, the measured value for each band is displayed as Bn: <measurement value>, n is the band number, as shown in the following figure:

Figure 5-26 Ripple test results show

5.3.1 Ripple Limit Table Editing

Ripple limit table editing, including add, delete, modify, clear, save, restore and other operations.

- 1. Press Channel Next or Channel Prev and press Trace Next or Trace Prev to select the trace to use the ripple test function.
- 2. Press Analysis
- 3. Click the Ripple Limit function button, enter the ripple test function menu, as shown below:
- 4. Click the Ripple Value Band function button, pop-up data input dialog box, enter the band number $(1 \sim 12)$.
- 5. Click Edit Ripple Limit function button, enter the ripple limit table edit state, as shown below:

🚺 T4 Netw	ork Analyzer 10	0MHz-4000	MHz						1000				_ 0 _X
Trace/Char	nnel Stimulus	Response	Display	Calibration	Marker	s Analysis	Save/Re	ecall System					
Tr1 S11 Lo	g Mag 10.00dB/	0.000dB											Edit Ripple Limit
50.00													- Euk ruppie Ennik
													Delete
40.00													
													Add
30.00													
													Edit
20.00													Clear Rinnle Limit
													Table
10.00													Save Ripple Limit
													Table
0.000													Restore Ripple Limit
													Table
-10.00													
-20.00													
-30.00													
30.00													
40.00													
-40.00													
50.00													
-50.00 1	00MHz											4GHz	
CH1 OFF	Start 100MHz			201		IF	FBW 10k	Hz	0.00dBm			Stop 4GHz	
Туре	Begin Stimulus	F	End Stimulus	R	ipple Limit								
1 OFF	100MHz		100MHz		0dB								
3 0FF	100MHz		100MHz		0dB								
2017-8-23 1	6:16									_		 Meas Connecting	
2011-0-23 1	0.10											Inteas Connecting	

Figure 5-27 Ripple Test Limit Table Edit

6. the operation of the function button to limit the table operation, the function buttons as described in the following table:

Function button	Description
Delete	Remove the ripple limit table where the cursor is
	located
Add	Add a row at the end of the ripple limit table
Edit	Enter the ripple limit table to edit the state
Clear Ripple Limit Table	Empty the entire ripple limit table
Save Ripple Limit Table	Save the ripple limit table into a file. Save the limit table
	as a file, extension: *. Rlm, you can call it at any time on
	the screen and use it. You can use this text editor to
	open and edit.
Restore Ripple Limit Table	Restore the ripple limit table from the file

5.3.2 Turn ON / OFF the Ripple Limit Test

- 1. Ripple limit table editing. <Reference ripple limit table edit section>
- 2. Click the Ripple Limit function button, enter the ripple test function menu, as shown below:

Figure 5-28 Ripple Test - Function Menu

Ripple Test The function buttons are described in the following table:

Function button	Description
Ripple Test	Set the ripple test on / off
Ripple Limit	Set the ripple limit line to show the opening / closing
Ripple Value	OFF: Turns off the display of test result values
	Absolute: Absolute value (the difference between the maximum and minimum values in the band)
	Margin: margin (the difference between the absolute value of the
	ripple and the fluctuation limit)
Ripple Value Band	Select the band to display its ripple value (1 \sim 12)
Edit Ripple Limit	Open the fluctuation limit table to edit the fluctuation limit. To
	use the ripple test function, you must first define the ripple limit.

Fail Sign	ON: Displays the channel test result					
	OEE: Channel test results are not displayed					
	OFF: Channel lest results are not displayed					

- 3. Click the Ripple Limit function button, once every click, turn ON, OFF switch once, when its state is set to ON, then the definition of the ripple limit line; when its state is set to OFF, then hide the definition of Ripple limit line.
- 4. Click the Ripple Value function button to select the display format of the fluctuation value. When OFF is selected, the test result will not show the ripple value. When Absolute is selected, the test result shows the absolute value of the ripple. When Margin is selected, the test result is displayed Ripple margin value.
- 5. Press or to return to the parent function menu Ripple Limit.
- 6. Click the Fail Sign function button, and turn ON and OFF each time it is clicked. When the status is set to ON, the test result of the channel is displayed. When the status is set to OFF, the channel test is not displayed result.
- 7. Click the Ripple Test function button, once every click, turn ON, OFF switch once, when its state is set to ON, then the ripple test, and according to the settings show the test results; when its status is set to OFF, no ripple test is performed.

5.4 Fixture Simulator Analysis Fixture Simulator

The fixture simulator is used to simulate measurement conditions, including the following functions:

- 1) Port impedance conversion
- 2) network to embed
- 3) network embedding

- 1. Press Channel Next or Channel Prev to select the channel you want to analyze.
- 2. press Analysis
- 3. Click the Fixture Simulator function button to enter the fixture emulator function selection menu.

ON - When the at least one function is set to ON, the Fixture Simulator function button is displayed as ON.

OFF - When all function items are set to OFF, the Fixture Simulator function button is displayed as OFF

4. port impedance transformation

Port impedance conversion function is the use of port impedance (such as: 50Ω) measurement results converted to different port impedance characteristics. The port impedance is set under the Calibration function menu. As shown below:

Figure 5-29 Port Impedance Transformation

Click the Port Z Conversion function button to enter the port impedance transformation function menu.

Click the Port Z Conversion function button to turn ON and OFF. When set to ON, the function is turned on; when set to OFF, the function is turned off.

Click the Port1 Z0 function button, the pop-up data input dialog box, in the dialog box, enter the port 1 need to transform the impedance value.

Click the Port2 Z0 function button, the pop-up data input dialog box, in the dialog box, enter the port 2 need to transform the impedance value.

5. the network to embed

This function is used to eliminate the influence of the fixture network between the calibration plane and the real network device DUT. The fixture is used between the measuring port and the DUT of the device under test. The network feature that is removed is defined in the data file containing the S parameter of the network, and the data file format is the Touchstone file (file suffix .s2p). The de-embedding function pulls the calibration plane closer to the DUT. As shown below:

Figure 5-30 Network De-embed function

Click the De-Embedding button to enter the network to activate the function menu.

Click the Port1 function button to turn ON and OFF. When set to ON, the function is turned on; when set to OFF, the function is turned off.

Click the Port1 S-parameters File button, pop-up data file selection window, select port 1 S parameter simulation data file, as shown below:

Open					×
Look in:	Desktop		Ŧ	+ 🖻 💣 📰	•
Recent Places Recent Places Desktop Libraries Libraries Computer Computer	Libraries me Computer Network bl				
	File <u>n</u> ame: Files of <u>type</u> :	*.s2p 2-Port Touchstone 3	Files	▼ (*. s2p) ▼	<u>O</u> pen Cancel <u>H</u> elp

Figure 5-31 Network to embed --- Simulation data file dialog window

Click the Port2 function button to turn ON and OFF. When set to ON, the function is turned on; when set to OFF, the function is turned off.

Click the Port2 S-parameters File button, pop-up data file selection window, select port 2 S parameter simulation data file.

6. network embedded function

This function is the realization of the virtual network added to the real network in the measurement results conversion function, the function is the network to embed the function of the inverse function. The added network attribute is defined in the simulation data file containing the S parameter of the network. The emulated data file format is the Touchstone file (file suffix .s2p). The embedded function adds the fixture to the emitter after the device is measured by the DUT parameter. As shown below:

Figure 5-32 Network embedding function

5.5 Time Domain Analysis Time Domain

The time domain analysis includes the following functions for determining the position and size of the mismatch.

1) Converts the measured data to the time domain (conversion function).

Using this conversion function, you can convert the frequency domain measurement results to the time domain measurement data and make the necessary analysis.

2) Delete unnecessary measurement data in the time domain (gating function)

Steps:

2. Press Analysis

- 3. Click the Time Domain function key to enter the time domain analysis function.
- 4. Turn on / off the function.

Click the Time Domain button to turn ON and OFF each time it is clicked. When set to ON, the function is turned on. When set to OFF, the function is turned off.

5. Set the strobe range

Click Start to set the start time; click Stop to set the stop time; click Center to set the time middle value; click Span to set the time interval value.

6. Set the strobe type

Click the Type function button and click the following function button to select the gating type.

Function Button	Description						
Bandpass	Bandpass						
Lowpass Step	Lowpass step						
Lowpass Impulse	Lowpass impulse						

7. set the window shape

Click the Window function button, click the following function button, the window shape selection.

Function Button	Description					
Maximum	β maximum					
Normal	β normal					
Minimum	βminimum					
Impluse Width	Impluse width setting					
KiserBeta	KiserBeta β					

8. set the low-pass measured frequency

Click the Set Frequency Low Pass function button to set the frequency of the frequency to be measured when the conversion type is low.

Note: The frequency of the measured point is a multiple of the starting frequency

5.6 Time Domain Gating Function

This function is used to remove unwanted response data from time domain measurements by mathematical operations. This function is used to measure the

spurious effects of the frequency response when the fixture is measured, provided that the useful signal and the spurious signal can be separated in the time domain.

The measurement flow is shown in the following table and the following figure:

Measurement Steps and	Description					
Items						
Frequency Domain	Measure in the frequency domain					
measurement						
change to the time	The transform function is enabled and the measured					
domain	data is converted into data in the time domain					
set the gate	The following settings are made for gating: gated type,					
	gated shape, gated range					
change back to the	The conversion function is disabled and the frequency					
frequency domain	domain response corresponding to the data selected using					
	the gating is displayed.					
1 Frequency Domain (2)						

Figure 5-33 Time domain gating measurement flow diagram

(A) Gated Type

Gated Type	Description					
Bandpass	Removes the response outside the threshold range					

Notch	Remove the threshold within the response

Steps:

- 1. Press the or key and press or to select the trace you want to use to set the gating type.
- 2. Press the button.
- 3. Click the Gating function button.
- 4. Click the Type function button, every click, switch between Bandpass and Notch once.

(B) Gated Shape

The gated shape is similar to a bandpass filter with a number of parameters representing the gated shape. The following figure illustrates the definition of gated shape parameters.

Figure 5 34 Time-domain gated measurement - Gated shape parameter definition The parameters are described in the following table:

Gated Shape	Sidelobe Level	Gated resolution (minimum gated span)						
Minimum	- 48 dB	2.8/ Frequency span						
Normal	- 68 dB	5.6/ Frequency span						
Wide	- 57 dB	8.8/ Frequency span						
Maximum	- 70 dB	25.4/ Frequency span						
Steps:								
1. Press Channel Next or Channel Prev and press Trace Next or Trace Prev to select the trace you want to use to set the setting type								

to select the trace you want to use to set the gating type.

- 2. Press Analysis
- 3. Click the Gating function button.
- 4. Click the Shape function button.
- 5. Click the function button to set the gated shape.

(C) Gated Range

Set the gated range by specifying the gating start time and gated end time, or by specifying the center time and time span, as shown in the figure above. The gated range that can be set is:

-T_{span} ${\sim} T_{span}$, ie, the lower limit: -T_{span} , upper limit: T_{span}

Description: $T_{span} = F_{span} / (N_{meas}-1)$, F_{span} is the span of the sweep frequency, N_{mea} is the measured number of points. Steps:

1. Press Channel Next or Channel Prev and press Trace Next or Trace Prev

to select the trace you want to use to set the gating type.

- 2. Press Analysis
- 3. Click the Gating function button.
- 4. Click the Start button to set the start time.
- 5. Click the Stop function button to set the end time.
- 6. Click the Center function button to set the gating center time.
- 7. Click the Span function button to set the gating time span.

(D) Start the Gating Function

Steps:

to select the trace you want to use to set the gating type.

2, press Analysis

Trace Prev

3. Click the Gating function button.

4, click the Gating function button, each click once, between ON and OFF, when set to ON, then start the gating function; when set to OFF, then turn off the gating function.

Note: The time domain gating function only works in linear frequency sweep mode.

5.7 Measurement Result Parameter Conversion

With this function, the measurement of the S parameter (S_{ab}) is converted to the following parameters.

 The equivalent impedance Z_r (Z: Reflection) and the equivalent admittance Y_r (Y: Reflection) in the reflection measurement.

$$Z_r = Z_{0a} \times \frac{1 + S_{ab}}{1 - S_{ab}}, Y_r = \frac{1}{Z_r}$$

2) The equivalent impedance Z_t (Z: Transmission) and equivalent admittance (Y_t) (Y: Transmission) in the transmission measurement.

$$Z_{t} = \frac{2 \times \sqrt{Z_{0a} \times Z_{0b}}}{S_{ab}} - (Z_{0a} + Z_{0b}), Y_{t} = \frac{1}{Z_{t}}$$

3) the reciprocal of the S parameter $1 / S_{ab} (1 / S: Inverse)$.

among them:

Z_{0a}: Characteristic impedance of port a

Z_{0b}: Characteristic impedance of port b

When the fixture emulator and port impedance functions are in the ON state, the value set in the port impedance conversion is used. In other cases, the system Z_0 (preset value: 50 Ω) will be used.

4) The equivalent impedance Z_t (Z: Trans-shunt) and the equivalent admittance Y_t (Y: Trans-shunt)

Port 1 (Zo1) Zt Port 2 (Zo2)
Z Transmittion- parallel
$$Zt = \frac{1}{Vt}$$

 $Yt = \frac{2\sqrt{Yo1 \cdot Yo2}}{S} - (Yo1 + Yo2)$
 $Yo1 = \frac{1}{Zo1}$ $Yo2 = \frac{1}{Zo2}$
Port 1(Zo1) Yt Port 2 (Zo2)
 Y Transmittion- parallel

5) Conjugate

Conjugate converts the measured values into complex conjugate numbers.

(A) Turn ON / OFF the Conversion Function

Steps:

- 1. Press Channel Next or Channel Prev and press Trace Next or Trace Prev to select the trace to be converted.
- 2. Press Analysis
- 3. Click the Conversion button.
- 4. Click the Conversion function button, each click once to turn ON, OFF once, when set to ON, then open the measurement results conversion function; when set to OFF. The measurement result conversion function is turned off.

(B) Select the Conversion Target Parameters Steps:

1. Press Channel Next or Channel Prev key and press Trace Next or Trace Prev to select the trace to be converted

to select the trace to be converted.

- 2. Press Analysis.
- 3. Click the Conversion button.
- 4. Click the Function button, click the function button that you want to use as the result of the conversion result, as shown in the following table:

Function button	Description					
Z:Reflection	The equivalent impedance in the reflection measurement Z_r					
Z:Transmission	The equivalent impedance in the transmission measurement					
	Zt					
Y:Reflection	Equivalent Admittance in Reflection Measurements Yr					
Y:Transmission	The equivalent admittance in transmission measurements Yt					
1/S:Inverse	S The reciprocal of the parameter					
Z:Trans-shunt	Transmission of the equivalent impedance in parallel Zt					
Y:Trans-shunt	The equivalent admittance in parallel transmission Yt					
Conjugation	Complex conjugate number					

6 DATA OUTPUT

6.1 Save the Data

6.1.1 Data Retention Category

Data retention category	Description
State	Save the settings of the instrument, and later save the saved
	settings to the instrument, you can reproduce the state when
	saved.
State & Cal	Save the instrument settings and calibration data, the saved
	data will be transferred to the instrument, you can reproduce
	the state of preservation, at the same time, the calibration data
	is also transferred to the instrument, you can use the calibration
	data to call the measurement error correction.
State & Trace	Save the instrument settings and trace (error correction data
	array and error correction memory array), the saved data will
	be transferred to the instrument, you can reproduce the state
	of preservation, at the same time, will also call the trace and
	display to the screen
All	Save the instrument settings, calibrate the data and trace, and
	then save the saved data to the instrument to reproduce the
	status of the save, and also call the calibration data and trace.

6.1.2 Save State

Steps:

1. Press Save

- 2. Click the Save Type button and select the Save category (see section "Data retention category").
- 3. Press \leftarrow or $\stackrel{\text{ESC}}{\longrightarrow}$ to return to the higher function menu Save.
- 4. Click the Save State button to enter the Save State menu.
- 5. Save to the status function button and add comments to the function button.
 Press to select the function button to be saved (State1 ~ State10), pop up the dialog box of the input function button, enter the function button

comment, then press Enter; if the function button has been RBI, it indicates that the instrument has saved the status file, When saved, the system will pop up whether to replace the selection window, as shown below:

Click the "Replace" function button, overwrite the original settings; click "Rename" function button, you can define a function button comment name, as shown below:

🚺 T4 Net Trace/Ch	work / annel	Analyze Stimu	er 100M Ilus Re	Hz-400	0MHz Displa	av Cali	bration	Marke	ers An	alvsis	Save/Re	call Sv	stem			-		١.									_	a x
BTN_Rer	name I	Label	State1							<u></u>														_			1	Save State
a	b	C	d	e	f	g	h	i	j	k		m	n	0	р	q	r	s	t	u	V	w	Х	у	z	1		State01
2	3	4	5	6	[]	8	9	0	,	-	=			1	,			•	/		B	S	S	nift	<u> </u>	nter		State02
Tr1 S11 I 50.00	Log Ma	ig 10.0	0dB/ 0.	000dB																								State03
40.00																											-	0
40.00																												State04
30.00																												State05
20.00																												State06
																												State07
10.00																												State08
0.000																												Statell9
10.00																												
-10.00																												State10
-20.00																												Autorec
-30.00																												State File
50100																												
-40.00																												
-50.00																										100		
CH1 OFF	Start	100MH	z				201			IFI	3W 10kH	z			0.00dBn	n									S	4GHz top 4GHz		
2017-8-23	16:24	1																						I	Meas C	onnecting		

6. keep to the file. Press (), select and click the State File button, enter the status file name, click the "Save" button, or select an existing file, click the "Save" button to overwrite the original file. As shown below:

6.1.3 Save Channel Save Channel

The instrument allows you to individually save / recall the instrument status of each channel. With this function, the instrument status of the working channel can be saved separately to one of the four registers (A to D, volatile memory, power off, this state will be lost), and the instrument status can be recalled from the register and restored to The status of the current working channel.

Since this function is used to call the instrument status of each channel from the different channels used to save the instrument status, this function is useful for copying the instrument status between channels.

Note: Unlike the state of the entire instrument, the instrument status of each channel is saved to the volatile memory, rather than being saved to the file, so that the state is lost if the power is turned off.

- 1. Press Channel Next or Channel Prev to activate the channel to save its status.
- 2. Press Save
- 3. Click the Save Channel button.

4. Click one of the State A to State D function buttons to save the instrument status of the working channel to the specified register. After the completion of the function button in the function before the button "●", if the function button has been RBI before, that the instrument has been saved in the state, save, cover it.

6.1.4 Save Trace Data

The work trace data on the working channel can be saved to a CSV file (file extension * .csv), and the data can be loaded into the PC application for further processing.

Steps:

3. Click the Save Trace Data button, open the "Save As" dialog box, enter the file name to save, click the Save button. As shown below:

Trace/Channel Stimulus Response Display Calil	bration Markers Analysis Save/Recall System			
Tr1 S11 Log Mag 10.00dB/ -20.00dB	Tr2	S21 Log Mag 10.00dB/ -40.00dB		Save/Recall
10.00 1 890.46367MHz -0.08 2 1.6508117GHz 0.126	12dB 4dB			
3 2.2031399GHz -0.19 0 000 - 4 3.0101130GHz - 0.074	31dB 9dB	v	2	Save State
0.000 -		<u>/</u> 3		Recall State >
-10.00	🧔 Save As		x	Necal State > 1
	Latest software + T4 1.3.4 + CSV	✓ 4 Search CSV	9	Save Channel
-20.00	Organize 👻 New folder	8≡ ▼	0	
	🔶 Favorites 🔷 Name	Date modified Type		Recall Channel > D
-30.00	Desktop	No items match your search.		Save Type
	I Recent Places			State & Cal
-40.00				Delete State
	Documents			Delete All State
-50.00	Music Dictures			Delete All State
	Videos			Save Trace Data
-60.00	The Computer of the			Oran Data Ta
				Touchstone File
-70.00	Save as type: CSV Files (*,CSV)		•	
-80.00	lide Folders	Save Cancel		
-90.00			4GHz	
CH1 OFF Start 1MHz	201 IFBW 10kHz	0.00 dBm	Stop 4GHz	

Figure 6-1 Save trace data

6.2 Save Data ToutchStone

You can save data in "real-imaginary", "linear-angle-angle", "logarithmic-angle" format. The file types are * .s1p and * .s2p. The file type indicates the number of ports that output the data structure to the Touchstone file.

Steps:

- 1. Press Channel Next or Channel Prev and press Trace Next or Trace Prev to select the trace you want to save.
- 2. Press Save
- 3. Click the Save Data To Touchstone File button.
- Click the Type button, select the file type, click the 1-Port (s1p) function button, select s1p, click the 2-Port (s2p) function button, select s2p, select the function button before the RBI "●".
- 5. Press or to return to the higher function menu Save Data To Touchstone File.
- 6. If you select the file type is s1p, you need to select the port number, otherwise, do not need this step. Click the Select Port function button, once for each click, once to switch 1,2.
- 7. Click the Format function button, enter the Touchstone Format function menu, select the file format. The file format is shown in the following table:

File Format	Description						
Real-Imaginary	Select the "real-imaginary" data format						
Magnitude-Angle	Select the "Linear Amplitude - Angle" data format						
dB-Angle	Select the "logarithmic amplitude - angle" data format						

8. Press the key or key to return to the higher function menu Save Data To Touchstone File.

9. Click the Save File button, open the "Save As" dialog box, enter the file name to save, click the Save button. As shown below:

Trace/Channel Stimulus Response Display Cal	bration Markers Analysis Save/Recall	System			
Tr1 S11 Log Mag 10.00dB/ -20.00dB		Tr2 S21 Log Mag 1	0.00dB/ -40.00dB		Save Data To
1 890.46367MHz -0.05 2 1.6508117GHz 0.164 3 2.2031399GHz -0.20	35dB 9dB 03dB		4 V		Type 2-Port(s2p)
0.000					Select Port (s1n)
-10.00	🖉 Save As				1 Eormat
	Latest software	▶ T41.3.4 FixtureSim	• Search FixtureSim	Q	Real-Imaginary
-20.00	Organize New folder	*		0	Save File
-30.00	Favorites Nan Desktop	ne No items mate	Date modified Type		1
-40.00	E Libraries				•
-50.00	Documents Music Pictures				
-60.00	Computer			,	
-70.00	File name: 20180722113	706		•	-
	Save as type: 2-Port Touch	istone Files (*.s2p)		• I	
-80.00	Hide Folders		Save Cance	el	
-90.00		A A		4GHz	
CH1 OFF Start 1MHz	201 IFBW 10	kHz 0.00 dBm		Stop 4Gł	łz

Figure 6-2 Save the data to TouchStone

6.3 Data Recovery Recall

6.3.1 State Recover State

- 1. Press Recall, enter the Recall function menu.
- 2. Click the Recall State function button to enter the Recall State function menu.
- 3. Press to select the status to be saved function button State1 ~ State10 (only the instrument has been saved in the state button can choose), press not click the State File function button, select the instrument to save the status file, click Open button. As shown below:

Trace/Channel Stimulus Response Display Calibra	ation Markers Analysis Save/F	Recall System				
Tr1 S11 Log Mag 10.00dB/ 0.000dB [F		Tr	2 S21 Log Mag 10.00dB/ 0.	.000dB [R		Recall State
50.00 1 532.11718MHz -24.913	dB		10.00 1 532.11718MHz	z -10.491dB		
40.00 2 112019297012 231004 3 2.0005000GHz -21.555	dB		3 2.0005000GHz	z -10.093dB		State01
30.00 4 2.6019121GHz -19.929 5 3.3437266GHz -19.178	IdB IdB		-10.00 4 2.6019121GHz 5 3.3#37266GHz	$z = \frac{-10.4}{10.228} dB \frac{\Lambda}{2}$	Å Å	
20.00			-20.00	-		State02
10.00	🙋 Open					
0.000	🕞 🕘 – 🗼 🕨 Latest soft	ware 🕨 T4 1.3.4 🕨 Stat	te 👻 🐓 Sea	arch State 🔎		State03
-10.00	Organize - New folde	1		··· · · · ·		VINE IEDI
-20.00		Name	^ Date mod	lified Type		State04
-30.00 $\sim 10^{-1}$ $\sim 10^{-1}$ $\sim 10^{-1}$ $\sim 10^{-1}$	Favorites		00.00.000	carpe carpe		
-40.00	Downloads	1.sta	08-09-201	6 15:06 STA File		State05
-50.00	📃 Recent Places	6.sta	06-09-201	6 15:44 STA File		
1MHz		🗋 11.sta	07-09-201	.6 15:18 STA File	4GHz	State06
10.00 1 52 117 0000 R	🙀 Libraries 🗉	55.sta	07-09-201	.6 15:26 STA File		
0.000 2 1.2819297GHz -2.2942	Documents	111.sta	25-08-201	.6 16:56 STA File		State07
-10.00 4 2 6019121GHz 2 -2.2412	Pictures	Statel sta	Type: STA File Size: 160 KB	5:47 STA File		
-20.00 5 3.3437266GHz -2.1431	d Videos	State2.sta	Date modified: 25-08-2016 16:5	6:15 STA File		State08
-30.00		State3.sta	17-07-201	8 13:13 STA File		
40.00	Computer	State4.sta	29-05-201	8 13:35 STA File		State09
50.00	Local Disk (C:)	State5.sta	29-05-201	.8 13:34 STA File		
-50.00	EENOVO (D:)				AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	State10
-60.00	File na	me: tsta	▼ State	e Files (*.sta)	MALINE V . ~~	
-70.00			C	Open 🔻 Cancel		Autorec
-80.00						
-90.00 1MHz		AGHz	-50.00 1MHz		A AGHz	State File
CH1 OFF Start 1MHz	201 IFB	W 10kHz	0.00 dBm		Stop 4GHz	

Figure 6-3 State recovery

6.3.2. Channel Recovery Recall Channel

- 1. Press Recall to enter the Recall function menu.
- 2. Click the Recall Channel button to enter the Recall C function menu.
- Press to select the status to be saved function button State A ~ State D (only the instrument has been saved in the state button can choose), press inter, as shown below:

💭 T4 Net	work Analyzer 10	00MHz-4000	MHz				. 1		100			
Trace/Ch	annel Stimulus	Response	Display	Calibration	Markers	Analysis	Save/Reca	all System				-
Tr1 S11 L 50.00	og Mag 10.00dB	/ 0.000dB										< Recall Channel
												State A
40.00												State B
30.00												State C
												State D
20.00												
10.00												
0.000												
010000												
-10.00												
-20.00												
-30.00												
-40.00												
-50.00	100MHz										4GHz	
CH1 OFF	Start 100MHz			201		IF	BW 10kHz		0.00dBm		Stop 4GHz	
2017-8-23	16:36										Meas Connecting	I

Figure 6-4 channel recovery

6.3.3 Delete State

- 1. Press Recall to enter the Recall function menu.
- 2. Click the Delete State function button, open the Delete State File dialog box, select the state file to delete, click the Open button, as shown below:

Trace/Channel Stimulus Response Display Calib	ration Markers Analysis Save	e/Recall System						
Tr1 S11 Log Mag 10.00dB/ -20.00dB		Tr2 S	S21 Log Mag 10	.00dB/ -40.00dB	В			(Sava/Pasall
30.00 1 890.46367MHz -33.72	1dB							Save/Recall
2 1.6508117GHz -24.04	9dB							
20.00 4 3.0101130GHz -12.90	2dB							Save State
20.00	1	<u>^</u>	4		∆ 4			
	Dalata Chata Ella					×		Recall State > 1
10.00	Delete State File							
	🕞 🌍 🗸 📕 🕨 Latest s	oftware + T4 1.3.4 + State		 Search State 		2		Save Channel
0.000	Organize T New fol	der			H . F	0		
0.000	organize · · · · · · · · · · · · · · · · · · ·				0 LB			Recall Channel > 1
	🔆 Favorites	Name		Date modified	Туре	- All		Recail Chamber > 1
-10.00	Nesktop	1.sta		08-09-2016 11:37	STA File			Save Type
	Downloads	4.sta		07-09-2016 15:06	STA File	h/	$\backslash / \backslash \land$	State & Cal
	🔢 Recent Places	6.sta		06-09-2016 15:44	STA File	\sim	$\vee \setminus /$	
-20.00		11.sta		07-09-2016 15:18	STA File			Delete State
	Cibraries	55.sta		07-09-2016 15:26	STA File	-	Ň	
	Documents	111.sta		25-08-2016 16:56	STA File			Delete All State
-30.00	a) Music	1111.sta		07-09-2016 16:47	STA File			
	Videos	State1.sta		03-04-2018 15:47	STA File			0 T D.
-40.00 V	Videos	State2.sta		17 07 2018 12:13	STA File			Save Trace Data
	1 Computer	Stated sta		20.05.2018 13:25	STA File			Saus Data Ta
	Local Disk (C:)	State5.sta		29-05-2018 13:34	STA File			Touchstone File
-50.00	LENOVO (D:)					•		
	Eile	10000 1000		State Files /* .	**)			
60.00	rite	name sta		• State Files (.s	510)	-		
-60.00				Open	 Cancel 			
						1.1		
-70.00			_					
1MHz							4GHz	
CH1 DEE Start 1MHz	201 IF	BW 10kHz	0.00 dBm				Stop 4GHz	

Figure 6-5 Delete status

6.3.4 Delete all States

- 1. Press Recall to enter the Recall function menu.
- 2. Click Delete All State l, pop-up warning dialog box, click OK button. As shown below:

Varnin	g	X
⚠	Delete All	l State Files?
	ок	Cancel

Figure 6-6 Delete all States

7 MEASUREMENT OPTIMIZATION

7.1 Expand the Dynamic Range

The dynamic range is the finite difference between the maximum input power level of the analyzer and the minimum measured power level (background noise). It is important to increase the dynamic range when evaluating a characteristic accompanied by a large change in amplitude (eg, passband and stopband for the filter). The dynamic range can be increased by reducing the noise floor of the receiver.

There are two ways to reduce the receiver noise:

- (I) reduce IF bandwidth
- (II) open the scan average

7.1.1 Reduce IF Bandwidth

Reducing the IF bandwidth of the receiver can reduce the impact of random noise on the measurement. Reducing the IF bandwidth to 1/10 of the original bandwidth reduces the bottom noise of the receiver by 10 dB.

Steps:

- 1. Press Channel Next or Channel Prev to select the channel to modify the IF bandwidth.
- 2. press Avg
- 3. press the IF Bandwidth function button.
- 4. Change the IF bandwidth in the data entry area.

7.1.2 Open the Average Scan Averaging

The average scan can reduce the impact of random noise on the measurement. The scan averages averaged the data (vectors) for each point based on the average of the user-specified averages of the weighted average of the successive scans. The scanning average can be represented by the following equation.

$$A_n = \frac{S_n}{F} + \left(1 - \frac{1}{F}\right) \times A_{n-1}$$

among them:

An = Scan average calculation result when the nth scan operation is performed at the relevant point (vector)

Sn = Measured value obtained when the nth scan operation is performed at the relevant point (vector)

F = scan average factor (integer from 1 to 999)

Steps:

- 1. Press Channel Next or Channel Prev to select the channel to modify the IF bandwidth.
- 2. Press Avg
- 3. Click the Ave Factor function button.
- 4. Change the Ave Factor value in the data entry area.
- 5. Click the Averaging function button, each click once, turn ON, OFF switch once, when the settings to switch its state to ON, then open the average scan function; when set to OFF, then turn off the average scan function.

7.2. Reduce Trace Noise

Start Smooth Measurements to reduce trace noise. After smoothing, the values of the points on the trace will be represented by the moving average of the values of multiple neighboring points. Smooth aperture (percentage of scan span) Defines the range of points to be included in the moving average calculation. You can define smoothing for each trace.

Steps:

4. Change the smooth aperture (%) value in the data entry area.

5. Click the Smothing function button, each click once, turn ON, OFF switch once, when its state is switched to ON, then open the smoothing function; when set to OFF, then turn off the smoothing function.

7.3 Improve the Accuracy of Phase Measurement

7.3.1 Electrical Delay

The electrical delay function can add or remove a lossless transmission line whose length varies with the receiver input. Use this function to increase the resolution of the phase measurement so that the linear phase offset can be measured. You can specify an electrical delay for each trace.

Steps:

- 1. Press Channel Next or Channel Prev and press Trace Next or Trace Prev to select the trace to set the electrical delay trace.
- 2. Press Scale .
- 3. Click the Electrical Delay button.
- 4. Through the panel input area (Entry) button to enter the value.

7.3.2 Phase Offset Phase

The phase offset function may be used to add or subtract a predetermined value associated with the frequency of the incoming and outgoing traces. Use this function to simulate a phase shift that occurs after an event such as adding a cable.

- 1. Press Channel Next or Channel Prev and press Trace Next or Trace Prev to select the trace to set the phase offset trace.
- 2. Press Scale.
- 3. Click the Phase Offset function button.
- 4. Through the panel input area (Entry) button to enter the value.

7.4 Increase the Measurement Speed

7.4.1 Closing the Update of Display Information

Turn off the update function of the on-screen display information to save the processing time required to update the display information in the analyzer, thus increasing the measurement speed.

Steps:

- 1. Press Display.
- 2. Click the Update button to switch its status to OFF to close the update of the displayed message.

7.4.2 Offset Error Correction

After closing the error calibration, you can reduce the data processing time required during the measurement process, thereby increasing the measurement speed.

(A) Turn Off the Measurement Calibration Data

Steps:

1. Press

2. Click the Correction function button, switch its status to OFF, turn off the error calibration function.

(B) Turn Off the System Calibration Data Steps:

- 1. Press System.
- 2. Click the Misc Setup function button.
- 3. Click the System Correction function button, once every click, turn ON, OFF switch once, when you need to turn off the system calibration data, set to OFF, when you need to open the system calibration data, set to ON.

7.4.3 Segment

7.4.3.1 Overview

Segmentation is to define two or more bands (called segments), and then specify the number of points, IF bandwidth, power level, scan mode, scan delay, and scan time for each segment. Perform a scan of all segments in sequence, just as the scan was done in one scan operation.

By skipping the band that you do not need to measure, you can scan and measure only the parts you need to increase the measurement speed.

You can define the best measurement conditions for each of the specified segments. For example, you can specify as many points as possible in segments that require high trace resolution; specify as few points as possible in segments that do not require high resolution. This reduces the measurement time and the overall measurement throughput is optimized because there is no need to perform the entire operation under the same measurement conditions for a particular band.

For example, to evaluate a bandpass filter with transmission characteristics (shown below), you can select the desired frequency band from A to G and determine the measurement conditions (as shown in the table below). This allows them to be measured simultaneously in a single scan operation.

As shown in the following figure and table, set A, B, C, E, G5 segments.

Figure 7-1 Schematic diagram of segmented scanning

Start	Termination	Points	IF	Power	Dely
Frequency	Frequency		Bandwidth		

А	440 MHz	915MHz	50	50kHz	0dBm	Os
В	915 MHz	980MHz	130	70kHz	0dBm	Os
С	980 MHz	1.035GHz	60	50kHz	0dBm	Os
D	1.035GHz	1.07GHz				
E	1.07GHz	2GHz	100	70kHz	0dBm	Os
F	2GHz	2.6GHz				
G	2.6GHz	3GHz	40	70kHz	0dBm	Os

7.4.3.2 Definition of Segmentation Tables

1. A segmented frequency band can not overlap with another segmented frequency band. (The start frequency of the segment must be higher than the termination frequency of its previous segment).

2. The start frequency of segment 1 must be higher than the starting frequency of the instrument frequency range, and the end frequency of the last segment must be lower than the end frequency of the instrument frequency range.

3. If the start frequency and the ending frequency of the segment are different, two of the maximum number of points supported by the instrument can be defined in the segment.

4. If the start frequency and end frequency of the segment are the same, the maximum number of points supported by the instrument can be defined in the segment.

5. Can set the items for each segment, scan range (Start, Stop), point (Point), IF bandwidth (IF BW), power level (Power), scan delay (Delay). As shown in the following table:

Data Item	Description
Start	Sets the start value of the scan range
Stop	Sets the end value of the scan range
Points	Set the number of scanning points
IFBW	Set the IF bandwidth
POWER	Set the scan function
Delay	Set the scan delay

- 1. Press t Channel Next or Channel Prev to select the channel to create the segment table.
- 2. Press Sweep Setup.
- 3. Click the Segment Table function button, enter the sub-table definition function menu, operate the function button to complete the definition of segment ratio. The functions of each function button are described in the following table:

Function	Description
Button	
Add	Add a row of data to the segment table
Delete	Delete the last row of data in the staging table
Edit	Enter the segment table item edit status
List IFBW	Turns on or off the IFBW data item
List Power	Turns the Power data item on or off
List Delay	Turns the Delay data item on or off

Press **ESC** to return the job focus from the segment table edit status to the menu function button operation status.

The sub-table definition interface is shown in the following figure:

Trace/Ch	annel S	Stimul	us Res	ponse	Displ	lay Ca	libration	Markers	Analysis	Save/Recall	System				
Tr1 511 50.00	Log M	ag 10	.00dB/	0.00	OdB									∢ s	egment Table
40.00															Add
20.00															Delete
10.00													ĺ		Edit
-10.00													=	•	List IFBW
-20.00													-	•	List Power
-40.00													1	•	List Delay
	300kH	Z				-						300kHz			
CH1 OFF	Start :	3UUkHz	:	Char	8	Segm	int a		1-1	Davisar	S	top 300kHz	-		
1	200	rt kua	2	SLOP) U –	PC	ornes o	10 4	-u	Odem	De	eray	U.		
2	300	kHz	3	00 ki	HZ		2	10 k	HZ	OdBm) s	U.		
3	300 l	kHz	3	00 ki	Hz		2	10 k	:Hz	OdBm	0) s	U.		
4	300 l	kHz	3	00 ki	Hz		2	10 k	Hz	OdBm	0) s			
2011-1-	-24 17:38										Meas	Not Ready			

Figure 7-2 Segment table definition interface

7.4.3.3 Execution of Segmented Scans

- 1. Press Channel Next or Channel Prev to select the channel to perform the segmented scan operation.
- 2. Press Sweep Setup
- 3. He definition of sub-table. (See section "Definition of segmentation tables").
- 4. Click the Sweep Type function button.
- 5. Click the Segment function button.

8 SYSTEM FUNCTION

8.1 **Print Function**

8.1.1 Printer Output Function

Steps:

- 1. Press System
- 2. Click the Print button.
- 3. Click the Invert Image function button, select the normal print or reverse print, ON for the reverse print, OFF for normal printing.
- 4. Click the Print button, pop-up printer settings window, as shown below, press the OK button to start printing.

Figure 8-1 Printer Settings Window

8.1.2 Save Image To File

- 1. Press System
- 2. Click the Print button.
- 3. Click the Invert Image function button, choose to save the normal image or reverse image, ON for the normal image, OFF for the reverse image.
- 4. Click the Save Image To File button, pop-up file name input window and soft keyboard, as shown below, enter the file name, press the Save button to save the image file.

	Si	ave As													?	×	
			Savejn	0	To Be S	orted					G	i ti		•			
		Progr	ams														
		Anti S	pam														
	ſ	Open Roas) i Pit ting													l	
		ToBes	Sorted														
		My Net	3 Iwork	File <u>p</u> Save	ame: as type:		JPEG (Files	(*. j	pg)			*		<u>S</u> ave Cancel		
a	b	с	d	е	f	g	h	i	j	k		m	n	0	р	q	r
s	t	u	v	w	x	у	z	1	2	3	4	5	6	7	8	9	0
,	-	=	[]	١	;	•	•	ŀ	1		В	s	Sł	nift	En	ter

Figure 8-2 File name input window and soft keyboard

8.2 System Setting

8.2.1 Ref Source

Steps:

1. Press System.

- 2. Click the Misc Setup function button.
- 3. Click the Ref Source button, select Interal if the internal reference source is selected, and External for the external reference source.

8.2.2 System Correction Setting

The system calibration data is the error calibration data generated when the instrument is shipped from the factory. Open the system calibration data can improve the measurement accuracy, turn off the system calibration data can improve the measurement speed.

Steps:

- 1. Press System
- 2. Click the Misc Setup function button.
- 3. Click the System Correction function button, once every click, turn ON, OFF switch once, when you need to turn off the system calibration data, set to OFF, when you need to open the system calibration data, set to ON.

8.2.3 Beeper Setting

Instrument built Ming bee device, in a certain state, can be issued a beep to show tips. The buzzer has two types of settings, as shown in the following table:

Beating type	Functional description
Beep Complete	A beep sounds to inform the user that the operation has
	been completed.
	The following status sounds:
	1) A calibration is completed.
	2) Data storage is complete.
Beep Warning	Beep, to alert the user to use.
	The following status sounds:
	1) limit test failed
	2) The instrument is in error

(A) set the operation to complete the buzzer Beep Complete

- 1. Press System
- 2. Click the Misc Setup function button.
- 3. Click the Beeper function button.
- 4. Click Test Beep Complete to listen to the sound.
- 5. Click the Beep Complete function button, once every click, turn ON, OFF switch once, if you need to turn off, then set to OFF, if you need to open, set to ON.

(B) set the warning buzzer Beep Warning Steps:

- 1. Press System.
- 2. Click the Misc Setup function button.
- 3. Click the Beeper function button.
- 4. Click Test Beep Warning.
- 5. Click the Beep Warning function button, once every click, turn ON, OFF switch once, if you need to close, then set to OFF, if you need to open, set to ON.

8.2.4 Key Lock

You can lock (disable) the front panel keys, mouse, touch screen. Use this function to prevent the measurement from being affected by misoperation.

- 1. Press System
- 2. Click the Misc Setup function button.
- 3. Click the Key Lock function button.
- 4. Click the Keyboard Lock function button, so that the button on the left side of the RBI, the instrument front panel keys are locked, RBI disappears, the instrument front panel keys to unlock.
- 5. Click the Touch Screen Lock function button, so that the button on the left side of the RBI, the instrument touch screen and the mouse is locked, RBI disappears, the instrument touch screen and mouse to unlock.
- 6. In the instrument panel keys and touch screen and mouse are locked, press **Enter** to unlock the currently selected.

8.2.5 Explorer

Operate the function into the windows resource management function interface, to achieve the copy of the file and other operations.

Steps:

- 1. Press System.
- 2. Click the Misc Setup function button.
- 3. Clck the Explorer function button, enter the windows explorer interface

8.2.6 Color Setup

This function is used to set the color of the different traces.

Steps:

- 1. Press System.
- 2. Click the Misc Setup function button.
- 3. Click the Color Setup function button.
- 4. Click the trace function button, select the need to set the color of the trace.
- 5. Click the Red function button, press the red component function button, set the red color of the color.
- 6. Click the Green function button, press the green component function button, set the color of the green component.
- 7. Click the Blue function button, press the blue component value function button, set the color of the blue component.
- 8. Click the Default button to restore the factory default color settings.

8.2.7 Time Setup

This function is used to set the time of the instrument system.

- 1. Press System.
- 2. Click the Misc Setup function button.

3. Click the Time Setup function button, pop-up time setting window, change the year, month, date and time, as shown below:

ate 王月		•		2011		÷	Time			· ·	
日		E	E	四	五	六	1		1		
		1	2	3	4	5					-
6	7	8	9	10	11	12			1		**
13	14	15	16	17	18	19			/ \		
20	21	22	23	24	25	26		Т.,	9 O		
27	28	29	30	31			Г		11: 3	33: 27	÷
		_	_		_						

4. click the OK button to complete the time setting.

8.2.8. Touch Screen Positioning Calibration

When the touch screen positioning deviation occurs, through the function of positioning calibration.

- 1. Press System.
- 2. Click the Misc Setup function button.
- 3. Click the TouchScreen Cal function button.

4. according to the prompt information, four-point positioning operation.

8.2.9 Display Brightness Adjustment

This function is used to adjust the brightness of the display screen.

Steps:

- 1. Press System.
- 2. Click the Luminance function button, enter the brightness value (5 \sim 100), set the brightness of the display.

8.3 Demo Mode Settings

- 1. Press System.
- 2. Click the Misc Setup button and then turn on the demo mode, as shown in the following figure:

3. This demo shows the testing of filter, it's just for client demonstration without connection to DUT and doesn't have all functions.

8.4 LAN Setting

Steps:

2. click the Network Setup function button, enter the windows Network Connection settings, as shown below:

TRANSCOM

3. Double-click "Local Area Connection", the following pop-up window:

📑 Intel 8	255x-based	PCI Ethernet Adap	L <u>C</u> onfig	ure
his c <u>o</u> nnecl	ion uses the	following items:		
Clie	nt for Micros	oft Networks		
🗹 📇 QoS 🗹 🗐 Dia	6 Packet Sci and Printer (heduler Sharing for Microso	ik Mahuadra	
	and Frinter ; met Protoco	ITCP/IP	IT NEWORKS	
l <u>n</u> stall.		<u>U</u> ninstall	P <u>r</u> oper	ties
Description	-	. Andre and		1
Transmiss	ion Control F	Protocol/Internet Pr	otocol. The def	ault
across div	erse intercor	nnected networks.	communication	1
L	in in notificat	tion area when cor	inected	

4. Select Internet Protocol (TCP / IP), the following pop-up window:

u can get IP settings assigned s capability. Otherwise, you ner e appropriate IP settings.	automatically if your network supports ed to ask your network administrator fo
O <u>O</u> btain an IP address autom	natically
 Use the following IP addres 	s]
IP address:	192.168.0.28
S <u>u</u> bnet mask:	255 . 255 . 255 . 0
<u>D</u> efault gateway:	192.168.0.1
 Obtain DNS server address Use the following DNS serv Preferred DNS server: 	automatically rer addresses:

5. Enter the IP Address, Subnet Mask equivalent, press OK.

8.5 Preset

Return the instrument to the instrument preset state. Steps:

- 1. Press Preset.
- 2. Click the OK button.

8.6 File Manage

File management is mainly used for the preservation of the instrument state data, image data, limit test configuration data, ripple test configuration data and other data files management, including delete, copy to the U disk and other operations, or external U disk Copy the data to the instrument.

Steps:

1. Press System

2. Click the File Manage button, pop-up file management window, as shown below.

Figure 8-4 File Management Window

- 3. The file management window has two sub-windows, "VNA Files window", "Flash Files window". "VNA Files window" shows the file stored in the instrument; "Flash Files window" shows the memory stored in the U disk file.
- 4. Delete the files stored in the instrument. Select the file to be deleted in the "VNA Files window", use the instrument panel ↓, →, ↑, ← to select a file or folder, press Enter, or use the touch screen, click the file you want to select, the selected file is ticked √ in □ before the file name, that is Press the Delete button in the window.
- 5. Copy the instrument stored in the file to the external U disk, in the "VNA Files window" to select the file to copy, with the instrument panel ↓, →, ↑, ← button to select the file or folder, press Enter, or use the touch screen, Click the file you want to select, and the selected file is ticked √ in □ before the file name, that is . Press the >>>> button in the window.
- 6. Copy the instrument stored in the U disk stored in the file to the instrument, in the "Flash Files window" to select the file to copy, with the instrument

panel $\downarrow, \rightarrow, \uparrow, \leftarrow$ button to select the file or folder, press Enter, or touch screen, The mouse click on the file to be selected, the selected file is ticked $\sqrt{}$ in \square before the file name, that is \blacksquare . Press the <<<< button in the window.

7. Press the Exit button in the window to exit and close the window.

8.7 Update

Operation of the function to achieve the software online upgrade, convenient and fast.

- 1. Prepare a U disk, format (the purpose is to ensure that U disk without a virus).
- 2. In the U root directory to create subdirectories, \ Transcom Update (note the case).
- 3. Copy the upgrade package to the U disk subdirectory \ Transcom Update.
- 4. The U disk into the T5215A / T5230A/T5280A A instrument USB interface, wait a few minutes, so that the vector network to identify the U disk.
- 5. Press System
- 6. Click the Update button, pop-up password input window, enter the password (the system default password is 123456).
- 7. The instrument began to upgrade process, after the upgrade, the instrument shows the normal interface.
- 8. After the upgrade is complete, you can operate "About" function, see whether the software version is the upgraded version.

8.8 About

On the description of the instrument model, vendor, software version number and other information.

- 1. Press System
- 2. Click the About function button, pop up About window, as shown below:

Figure 8-5 T5230A on the window

8.9 Full Screen

This function is used to maximize the screen display, will be unnecessary menu and other information was hidden, increasing the measurement window, easy to measure the curve and information view.

- 1. Press System.
- 2. Click the Full Screen function button, the function button before playing "•", as shown below:

Figure 8 6 Full Screen function diagram

9 MMON FAULTS AND SOLUTIONS

Serial Numbe	Fault Phenomenon	Solution	Remarks
r			
1		1) Check that the power cord is plugged in	
		connected.	
	The instrument can not	2) Check that the power switch on the	
	start normally	rear panel of the instrument is turned	
		on.	
		3) The instrument has a delay protection	
		function to prevent the power supply is	
		not good, the instrument frequently	
		restart, after the shutdown, you need	
		to wait 1-2 minutes, then boot.	
2	The instrument starts	Press Scale on the front panel	
	normally, but does not	of the instrument and click the AutoScale	
	see the measurement	function button.	
	trace.		
3	Instrument front panel	Press instrument panel keyboard	
	keyboard, touch screen	Enter, try the touch screen or	
	and mouse can not	mouse, or whether the panel keyboard can	
	operate.	be used normally; then, enter the System->	
		Misc Setup-> Key Lock function menu to	
		check whether the Keyboard Lock, Touch	
		Screen Lock option is selected.	

Serial	Fault		
Numbe	Phenomenon	Solution	Remarks
r			
4	The instrument front	Use the touch screen or mouse to enter	
	panel keyboard can not	the System-> Misc Setup-> Key Lock	
	operate.	function menu to check if the Keyboard	
		Lock option is selected.	
5	Instrument touch	Use the instrument front panel keypad to	
	screen and mouse can	access the System-> Misc Setup-> Key Lock	
	not operate.	function menu to check if the Touch Screen	
		Lock option is selected.	
6	The measurement	1) Check the normal connection of the	
	results are larger each	cable and the connection is secure and	
	measurement error.	reliable.	
		2) Check whether the measurement	
		calibration is normal.	
		3) Check that the calibration options used	
		are correct.	
		4) Check that the excitation source signal	
		is set to ON.	
7	The file can not be	1) 1) Please check whether the U disk is	
	copied to the U disk.	not writable.	
		2) 2) Please check whether the U disk is	
		available.	
		3) 3) U disk inserted into the instrument,	
		you need to wait 1-2 minutes, waiting	
		for the instrument automatically	
		recognize the U disk.	

10 IALIZE THE PARAMETER VALUE

After the instrument is initialized, the default value of each parameter is as follows.

Serial	Parameter Description	Default	Parameter Setting
Number		Setting	Object
1	Data Saving Type	State and Cal	Analyzer
2	Touchstone Data Format	Real-Imaginary	Analyzer
3	Allocation of Channels	×1	Analyzer
4	Active Channel Number	1	Analyzer
5	Marker Value	7 digits	Analyzer
	Identification Capacity		
	(Stimulus)		
6	Marker Value	4 digits	Analyzer
	Identification Capacity		
	(Response)		
7	Marker Table	OFF	Analyzer
8	Reference Frequency	Internal	Analyzer
	Source		
9	Trigger Signal Source	Internal	Analyzer
10	Reference Channel Error	ON	Analyzer
	Correction		
11	System Correction	ON	Analyzer
12	Allocation of Traces	×1	Channel
13	Vertical Divisions	10	Channel
14	Channel Title Bar	OFF	Channel
15	Channel Title	Empty	Channel
16	«FAIL» Label Display	OFF	Channel

Serial	Parameter Description	Default	Parameter Setting
Number		Setting	Object
	(Limit Test)		
17	Traces per Channel	1	Channel
18	Active Trace Number	1	Channel
19	Marker Coupling	ON	Channel
20	Sweep Type	Linear Frequency	Channel
21	Number of Sweep Points	201	Channel
22	Stimulus Start Frequency	300 kHz	Channel
23	Stimulus Stop	1.5GHz/3.0GHz/8.0 GHz	Channel
	Frequency	(T5215A/T5230A/T5280A)	
24	Stimulus CW Frequency	300 kHz	Channel
25	Stimulus Start Power	–55 dBm /–60 dBm(T5215A、	Channel
	Level	T5230A/T5280A)	
26	Stimulus Stop Power Level	10dBm	Channel
27	Stimulus Power Level	0dBm	Channel
28	Stimulus Power Slope	0dBm	Channel
29	Stimulus IF Bandwidth	10 kHz	Channel
30	Sweep Measurement Delay	Osec	Channel
31	Sweep Range Setting	Start / Stop	Channel
32	Number of Segments	1	Channel
33	Points per Segment	2	Channel
34	Segment Start Frequency	300 kHz	Channel

Serial	Parameter Description	Default	Parameter Setting
Number		Setting	Object
35	Segment Stop	300 kHz	Channel
	Frequency		
36	Segment Sweep Power	0 dBm	Channel
	Level		
37	Segment Sweep IF	10 kHz	Channel
	Bandwidth		
38	Segment Sweep	0 sec.	Channel
	Measurement Delay		
39	Segment Sweep Power	OFF	Channel
	Level (Table Display)		
40	Segment Sweep IF	OFF	Channel
	Bandwidth (Table		
	Display)		
41	Segment Sweep	OFF	Channel
	Measurement Delay		
	(TableDisplay)		
42	Segment Sweep Range	Start / Stop	Channel
	Setting		
43	Averaging	OFF	Channel
44	Averaging Factor	10	Channel
45	Trigger Mode	Continuous	Channel
46	Table of Calibration	Empty	Channel
	Coefficients		
47	Error Correction	OFF	Channel
48	Port Z Conversion	OFF	Channel
49	Port 1 Simulated	50 Ω	Channel
	Impedance		

Serial	Parameter Description	Default	Parameter Setting		
Number		Setting	Object		
50	Port 2 Simulated	50 Ω	Channel		
	Impedance				
51	Port 1 De-embedding	OFF	Channel		
52	Port 2 De-embedding	OFF	Channel		
53	Port 1 De-embedding	Empty	Channel		
	S-parameter File				
54	Port 2 De-embedding	Empty	Channel		
	S-parameter File				
55	Port 1 Embedding	OFF	Channel		
56	Port 2 Embedding	Port 2 Embedding OFF			
57	Port 1 Embedding User	Empty	Channel		
	File				
58	Port 2 Embedding User	Empty	Channel		
	File				
59	Measurement	S11	Trace		
	Parameter				
60	Trace Scale	10 dB / Div.	Trace		
61	Reference Level Value	0 dB	Trace		
62	Reference Level Position	5 Div.	Trace		
63	Data Math	OFF	Trace		
64	Phase Offset	0°	Trace		
65	Electrical Delay	0 sec.	Trace		
66	S-parameter Conversion	OFF	Trace		
67	S-parameter Conversion	Z: Reflection	Trace		
	Function				
68	Trace Display Format	Logarithmic Magnitude (dB)	Trace		

Serial	Parameter Description	Default	Parameter Setting
Number		Setting	Object
69	Time Domain	OFF	Trace
	Transformation		
70	Time Domain	–10 nsec.	Trace
	Transformation Start		
71	Time Domain	10 nsec.	Trace
	Transformation Stop		
72	Time Domain	6	Trace
	Kaiser-Beta		
73	Time Domain	Bandpass	Trace
	Transformation Type		
74	Time Domain Gate	ON	Trace
75	Time Domain Gate Start	-10 ns	Trace
76	Time Domain Gate Stop	10 ns	Trace
77	Time Domain Gate Type	Bandpass	Trace
78	Time Domain Gate	Normal	Trace
	Shape		
79	Smoothing	OFF	Trace
80	Smoothing Aperture	1%	Trace
81	Trace Display Mode	Data	Trace
82	Limit Test	OFF	Trace
83	Limit Line Display	OFF	Trace
84	Defined Limit Lines	Empty	Trace
85	Number of Markers	0	Trace
86	Marker Position	300 kHz	Trace
87	Marker Search	Maximum	Trace
88	Marker Tracking	OFF	Trace

Serial	Parameter Description	Default	Parameter Setting
Number		Setting	Object
89	Marker Search Target	0 dB	Trace
90	Marker Search Target	Both	Trace
	Transition		
91	Marker Search Peak	Positive	Trace
	Polarity		
92	Marker Search Peak	3 dB	Trace
	Excursion		
93	Bandwidth Parameter	OFF	Trace
	Search		
94	Marker Search	-3 dB	Trace
	Bandwidth Value		
95	Marker Search Range	OFF	Trace
96	Marker Search Start	0	Trace
97	Marker Search Stop	0	Trace

11 SET PARAMETERS AND RANGE

The following table lists the setup parameters, the range, instrument, channel, or trace that it controls.

		Controlled Range					
Serial Number	Parameter	Instru -men t	Channel	Trace	Set Key		
Incentive Settings							
	Scanning		V		Start Ston Center Snan		
	range		v		Start, Stop, Center, Span		
	Power,						
	CW		٧		"Sweep Setup">"Power"		
	frequency						
	Scan time				"Sween Setun">"Sween		
	/ scan		V		Time"/"Sween Delay"		
	delay						
	Points		٧		Sweep Setup" >"Points"		
	Segmente				"Sweep Setup">"Sweep		
	d		v		Туре",		
	scanning				"Edit Segment Table"/"Segme		
	8				nt Display"		
	scanning		v		"Sweep Setup">"Sweep		
	method				Mode"		
Trigger Set	ttings	1	1		[
	Trigger	v			"Trigger">"Trigger Source"/"		
	source				Restart"/"Trigger"		
					"Trigger" > "Hold"/"Hold All		
	Trigger		v		Channels"/"Single"/"Continuo		
	mode				us" / "Continuous Disp		
					Channels"		
Response	Response Settings						
	Measurem						
	ent			v	Meas		
	parameter						
	s						
	Data			v	Format		
	Format						
	Scale,			V	Scale		

			Controlled	Range	
Serial	Daramotor	Instru	Channel	Trace	Sat Kay
Number	Parameter	-men			Set Key
		t			
	electrical				
	delay,				
	phase				
	offset				
	Storage				
	traces and				
	data			v	"Display">"Display"/"Data ->
	calculatio				Mem''/"Data Math"
	ns				
	Window				"Display" >"Edit Title Labe"
	title		V		/"Title Label (ON/OFF)"
	Display				()
	update on	v			"Display" >"Update
	/ off	-			(ON/OFF)"
	/ 011				"Avo">"Averaging Restart"/"
	average		v		Ava Factor" /"Averaging
	average		v		(ON/OFF)"
					(010011) "Avg" >"Smo
	smooth			N	A perture"/"Smoothing (ON/O
	sillootti			v	FF)"
	IE				11)
	1r bondwidth		٧		"Avg" >"IF Bandwidth"
	oalibration				Cal
	canoration		V		
	mark			V	Marker, Marker Search,
A 1 *					Maker Feth
Analysis	T .				
	Fixture		v		"Analysis" >"Fixture
	simulator				Simulator"
	Time			v	"Analysis">"Gating" /"
	Domain				Transform"
	Parameter				
	conversio			V	"Analysis" >"Conversion"
	n				
	Limit test			V	"Analysis">"Limit Test"
	Save and	v			Save/Recall
	call data	v			
System					
	Print /				System
	copy /	v			

	Parameter	Controlled Range			
Serial		Instru	Channel	Trace	Set Key
Number	raiametei	-men			Set Ney
		t			
	buzzer /				
	GRIB				
	settings /				
	network				
	settings /				
	date and				
	time / lock				
	key /				
	Preset	V			Preset

Limited Warranty

All products manufactured by Seller are warranted to be free from defects in material and workmanship for a period of one (3) year, unless otherwise specified, from date of shipment and to conform to applicable specifications, drawings, blueprints and/or samples. Seller's sole obligation under these warranties shall be to issue credit, repair or replace any item or part thereof which is proved to be other than as warranted; no allowance shall be made for any labor charges of Buyer for replacement of parts, adjustment or repairs, or any other work, unless such charges are authorized in advance by Seller.

If Seller's products are claimed to be defective in material or workmanship or not to conform to specifications, drawings, blueprints and/or samples, Seller shall, upon prompt notice thereof, either examine the products where they are located or issue shipping instructions for return to Seller (transportation-charges prepaid by Buyer). In the event any of our products are proved to be other than as warranted, transportation costs (cheapest way) to and from Seller's plant, will be borne by Seller and reimbursement or credit will be made for amounts so expended by Buyer. Every such claim for breach of these warranties shall be deemed to be waived by Buyer unless made in writing within ten (10) days from the date of discovery of the defect.

The above warranties shall not extend to any products or parts thereof which have been subjected to any misuse or neglect, damaged by accident, rendered defective by reason of improper installation or by the performance of repairs or alterations outside of our plant, and shall not apply to any goods or parts thereof furnished by Buyer or acquired from others at Buyer's request and/or to Buyer's specifications. Routine (regularly required) calibration is not covered under this limited warranty. In addition, Seller's warranties do not extend to the failure of tubes, transistors, fuses and batteries, or to other equipment and parts manufactured by others except to the extent of the original manufacturer's warranty to Seller.

The obligations under the foregoing warranties are limited to the precise terms thereof. These warranties provide exclusive remedies, expressly in lieu of all other remedies including claims for special or consequential damages. SELLER NEITHER MAKES NOR ASSUMES ANY OTHER WARRANTY WHATSOEVER, WHETHER EXPRESS, STATUTORY, OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS, AND NO PERSON IS AUTHORIZED TO ASSUME FOR SELLER ANY OBLIGATION OR LIABILITY NOT STRICTLY IN ACCORDANCE WITH THE FOREGOING.