Configuring and Applying the MC74HC4046A Phase-Locked Loop

A versatile device for 0.1 to 16MHz frequency synchronization

Prepared by: Cleon Petty, Gary Tharalson & Marten Smith Logic Application Engineers

Abstract

The MC74HC4046A (hereafter designated HC4046A) phase–locked loop contains three phase comparators, a voltage–controlled oscillator (VCO) and an output amplifier. The user of this document should have a copy of the HC4046A data sheet in ON Semiconductor Data Book DL129 available for details of device operation and operating specifications. The user should also be aware that

http://onsemi.com

APPLICATION NOTE

the following information is useful for approximating a design **but**, because of process, layout and other variables, there can be substantial deviation between theory and actual results. Therefore, **it is highly recommended that prototypes be built and checked before committing a design to production**.

Typical applications for the HC4046A usually involve a configuration such as shown in Figure 1.

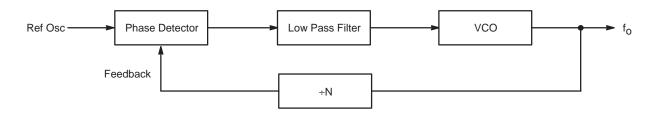


Figure 1. Typical Phase-Locked Loop

VCO/OUTPUT FREQUENCY

The output frequency, F_0 , is calculated as a function of the Ref Osc input and the $\div N$ feedback counter:

$$F_0 = \text{Ref Osc }^* N$$
 (1)

The ability of the loop to emulate the above formula makes it ideal for multiplying an input frequency by any number up to the maximum of the VCO. The HC4046A VCO frequency is controlled by the equation:

$$VCO freq = f(I * C)$$
 (2)

where I is controlled by the external resistors R_1 and R_2 and C by external capacitor C_{ext} .

Frequency of oscillation is calculated by starting with the familiar equation:

$$I = c \frac{dV}{dt} \tag{3}$$

and reworking it to obtain a formula that incorporates all the detail to fit the HC4046A. First, the charge time of the device for half–cycle time is obtained as follows:

$$dt = dV \frac{C}{I}$$
 and $F_0 = \frac{1}{2dt}$

or,
$$F_0 = \frac{\frac{1}{2CdV}}{I} = \frac{I}{2CdV}$$
 (4)

where I and dV must be obtained for the HC4046A.

There are two components that comprise the I charge for the HC4046A VCO, I_1 and I_2 . I_1 is the current that sets the frequency associated with the VCO input and is a function of R_1 , VCO_{in}, and an internal current mirror that is ratioed at $120/5 \approx 24$, resulting in the equation:

$$I_1 = \frac{VCO_{in}}{R_1} \left(\frac{120}{5}\right) \tag{5}$$

 I_2 is set by R_2 and adds a constant current to limit the F_0 min of the VCO and is a function of V_{dd} , R_2 , and an internal current mirror of ratio 23/5, resulting in the equation:

$$I_2 = \left(\frac{2V_{dd}}{3R_2}\right) \left(\frac{23}{5}\right) \tag{6}$$

The dV of Equation (4) is determined by design to be $\approx 1/3$ V_{dd}. Substituting this and I=I₁+I₂ into Equation (4) results in:

$$F_{O} = \frac{\frac{\text{VCO}_{in}}{R_{1}} \left(\frac{120}{5}\right) + \left(\frac{2\text{Vdd}}{3R_{2}}\right) \left(\frac{23}{5}\right)}{2C_{ext} \frac{\text{Vdd}}{3}}$$

$$= \frac{\frac{\text{VCO}_{in}}{R_{1}} (24) + \left(\frac{2\text{Vdd}}{3R_{2}}\right) (4.6)}{2C_{ext} \frac{\text{Vdd}}{3}}$$

$$= \frac{\frac{3\text{VCO}_{in}}{R_{1}} (24) + \frac{2\text{Vdd}}{R_{2}} (4.6)}{2C_{ext} \text{ Vdd}}$$
(7)

It was found by experiment that when the C_{ext} potential reaches threshold (at $V_{dd}/3$), the inversion of the charging voltage of C_{ext} is forced below ground due to charge coupling. Therefore, the dV is not just $V_{dd}/3$ as expected and the charging time must start at a point below ground which affects t and thus, F_{o} . An undershoot voltage must be added to the equation for better accuracy in calculating t and F_{o} . This modifies Equation (7) as follows:

$$F_{O} = \frac{\frac{3VCO_{in}}{R_{1}}(24) + \frac{2V_{dd}}{R_{2}}(4.6)}{2C_{ext} (V_{dd} + 3 * undershoot)}$$

$$= \frac{\frac{3VCO_{in(I_{constant ratio})}}{R_{1}} + \frac{9.2(V_{dd})}{R_{2}}}{2C_{ext} (V_{dd} + 3 * undershoot)}$$
(8)

Equation (8) now contains all the factors to calculate an F_{0} for the HC4046A VCO.

It was determined by experiment that the undershoot of the charging waveform is a function of C_{ext} and an on–chip parasitic diode that clamps it at a maximum of -0.7V. The size of the C_{ext} capacitor limits the voltage and was found to be near zero volts for $C_{stray} \approx 17 \text{pF} \leq C_{ext} \leq 30 \text{pF}$; the voltage increases at 6 mV/pF for a $30 \text{pF} \leq C_{ext} \leq 150 \text{pF}$ range of C_{ext} . The on–chip diode then takes over and limits the voltage to -0.7V.

It was also found that the $I_{constant\ ratio}$ is a function of R_1 and increases as R_1 becomes larger. The change is attributed to saturation of the current mirror at lower value resistances, and to voltage divider problems at higher value resistances combined with the resistance of the small FET in the current mirror. Experimental data shows that $I_{constant\ ratio}$ follows Table 1 somewhat. The ratio goes to 25 somewhere between 9.1K Ω and 51K Ω , and for those limits, 25 should give reasonable results. In addition, these numbers seem to hold for a range of V_{dd} of $3.0V \le V_{dd} \le 6V$.

1. Iconstant ratio versus R₁

R ₁ (KΩ)	Iconstant ratio	
3.0 5.1 9.1 12 15 30 40 51	13.5 17.5 21.5 23.0 24.0 26.5 27.0 28.5	
110 300	26.5 29.0 31.0	

The VCO calculation [Equation (8)] becomes a bit more accurate by adjusting the VCO_{in} and $I_{constant\ ratio}$. For example, with $R_1 = 300K$, $R_2 = \infty$, $C_{ext} = 0.1 \mu F$, VCO_{in} = 1.0V, $V_{dd} = 4.5V$, and $I_{constant\ ratio} = 31$, Equation (8) yields:

$$F_{O} = \frac{\frac{(3)(1)(31)}{300K}}{2(0.1 * 10^{-6})(4.5 + 2.1)}$$

= 235Hz

For comparison, from Chart 14D in the HC4046A data sheet, the F_0 based on measurements is approximately 270 Hz. Thus, the calculated and measured values are not too far apart taking into consideration such variables as process variation, temperature, and breadboard inaccuracies. The C_{stray} of a PCB layout will affect results if the C_{ext} is not \gg C_{stray} . So for $C_{ext} \le 1000$ pF, adding C_{stray} to the C_{ext} fixed capacitance will result in better accuracy.

The gain of a VCO is calculated by knowing f_{max} at VCO_{in} max and f_{min} at VCO_{in}min and calculating the following equation:

VCO gain =
$$\frac{f_{max} - f_{min}}{VCO_{in} max - VCO_{in} min}$$
=
$$\Delta f_{reg}/volt$$
 (9)

The gain of the VCO is needed to calculate a suitable loop filter for a PLL system.

 F_{O} is determined by VCO_{in} and is clamped as a function of a % of V_{dd} . The clamp voltage generally follows the slope of 4%/V for V_{dd} changes from $3.5V \le V_{dd} \le 6V$, starting at 56% at $V_{dd} = 3.5V$ and going to 66% at $V_{dd} = 6V$. Knowing this limit point allows picking a VCO_{in} max point a few hundred mV below it and keeps F_{O} in the linear range of operation. It also best to pick a VCO_{in} min point at a level of a few hundred mV above 0V for the same reason given above.

As an example, for a C_{ext} =1100pF, R_1 =9.1K, R_2 = ∞ , V_{dd} =5.0V, and VCO_{in} min = 0.25V, VCO_{in} max can be determined and a gain calculated as follows. VCO_{in} limit = $(4\%/V)(1.5V) + 56\% = (62\%)(V_{dd}) = 3.1V$. So, for sake of linearity, choose VCO_{in}=2.5V. Using Equation (8), VCO_{in} min and VCO_{in} max can be used to calculate F_0 min and F_0 max as follows:

$$F_0 \text{ min} = \frac{\frac{(3)(0.25)(21.5)}{9.1K}}{2(1100*10^{-12})(5+2.1)} = 113.4KHz$$

$$F_{O} \text{ max} = \frac{\frac{(3)(2.5)(21.5)}{9.1K}}{2(1100 * 10^{-1}2)(5 + 2.1)} = 1.3MHz$$

Then, using Equation (9), the VCO gain is:

VCO gain =
$$\frac{1.3*106-0.11*106}{2.5-0.25}$$
 = 528.9KHz/V

This gain factor will be known as K_{VCO} in the loop filter equations.

 R_2 is used in applications where a minimum output frequency is desired when VCO_{in} is 0V. It is calculated at $VCO_{in} = 0V$ causing Equation (8) to become:

$$F_{O} = \frac{9.2 \text{ (V}_{dd})}{2C \text{ (R2) (V}_{dd} + 3 \text{* undershoot)}}$$

The additional I_2 current is a constant that adds to total charge current for C_{ext} and increases the VCO_{in} versus F_O curve by a theoretical constant amount. In reality, the amount of increase actually decreases at a slight rate as VCO_{in} increases. The decrease is slight and the use of Equation (8) will give adequate accuracy for most applications.

The F_{max} of the HC4046A VCO was determined to be about 16MHz. Beyond 16MHz, the output logic swing tends to reduce and is therefore somewhat useless for driving a CMOS input. The VCO will operate at \approx 28MHz but the output has a $V_{OL} \approx 2.0 V$ and a $V_{OH} \approx 4.5 V$ at $V_{dd} = 5.0 V$.

The following table was generated to make calculation of R_1 and C_{ext} a function of F_0 with $V_{dd}\!=\!5V, VCO_{in}\!=\!1V,$ and room temperature. Use of the table allows a rough estimate of $(R_1)(C_{ext})$ for a given F_0 . The final values can be adjusted by use of Equation (8), Table 1 for $I_{constant\,ratio}$, rules for undershoot voltage, V_{dd} variations, and VCO_{in} variations. The example below shows a typical calculation.

2. (R₁)(C_{ext}) versus F₀

R ₁ (Ω)	C _{ext} (pF)	(R ₁)(C _{ext})
$3.0K \le R_1 \le 9.0K$	$\begin{array}{c} 0 \leq C_{ext} \leq 30 \\ 30 \leq C_{ext} \leq 150 \\ 150 \leq C_{ext} \leq \infty \end{array}$	5.40/F ₀ 4.15/F ₀ 3.80/F ₀
9.1K ≤ R ₁ ≤ 50K	$\begin{array}{c} 0 \leq C_{ext} \leq 30 \\ 30 \leq C_{ext} \leq 150 \\ 150 \leq C_{ext} \leq \infty \end{array}$	7.50/F ₀ 5.77/F ₀ 5.28/F ₀
50K ≤ R ₁ ≤ 900K	$\begin{array}{c} 0 \leq C_{ext} \leq 30 \\ 30 \leq C_{ext} \leq 150 \\ 150 \leq C_{ext} \leq \infty \end{array}$	9.00/F ₀ 6.92/F ₀ 6.34/F ₀

Assume a desired value of F_0 of 1MHz. From 2, choose an R_1 range of $9.1 \text{K} \le R_1 \le 50 \text{K}$ and a C_{ext} range of > 150 pF; this condition leads to $(R_1)(C_{\text{ext}}) = 5.28/F_0$. Thus,

$$(R_1) (C_{ext}) = \frac{5.28}{1*10^6} = 5.28*10^{-6}$$

Now choose a Cext of 200pF. Then, from above result,

$$R_1 = \frac{5.28 * 10^{-6}}{200 * 10^{-12}} = 26K$$

This appears reasonable and there are standard values for $C_{ext} = 200 pF$ and $R_1 = 27 K$. Using these values, Equation (8) can be adjusted according to the desired F_0 min, F_0 max, and F_0 center.

LOW PASS FILTER DESIGN

The design of low pass filters is well known and the intent here is to simply show some typical examples. Reference should be made to the HC4046A Data Sheet and to Application Note AN535/D — "Phase–Locked Loop Fundamentals" (available through ON Semiconductor Literature Distribution).

Some simple types of low pass filters are shown in Figure 2 and Figure 3.

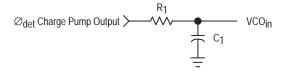


Figure 2. Simple Low Pass Filter A

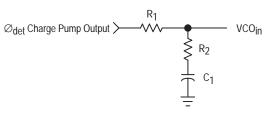


Figure 3. Simple Low Pass Filter B

The equations for calculating loop natural frequency (w_n) and damping factor (d) are as follows:

For Filter A (Figure 2):

$$w_{n} = \sqrt{\frac{K_{\emptyset}K_{VCO}}{NC_{1}R_{1}}}$$

$$d = \frac{0.5w_n}{K_{\emptyset}K_{VCO}}$$

where $K \varnothing =$ phase detector gain, $K_{VCO} = VCO$ gain, and N = divide counter.

For Filter B (Figure 3):

$$w_{n} = \sqrt{\frac{K_{\varnothing}K_{VCO}}{NC_{1}(R_{1} + R_{2})}}$$

$$d = 0.5w_{n}(R_{2}C_{1} + \frac{N}{K_{\varnothing}K_{VCO}})$$
 (10)

Figure 4 shows an active filter using an op amp from Application Note AN535/D.

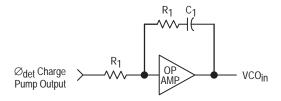


Figure 4. Op Amp Filter

For Figure 4, the equations become:

$$w_{n} = \sqrt{\frac{K_{\emptyset}K_{VCO}}{NC_{1}R_{1}}}$$
 (11)

$$d = \frac{K_{\varnothing}K_{VCO}R_{2}}{2w_{n}NR_{1}}$$
 (12)

$$=\frac{w_{n}C_{1}R_{2}}{2}$$
, where Op Amp gain is large

From the above equations, it is possible to design a suitable filter to meet the needs of many PLL applications. The inclusion of R_2 in the equations for Figure 3 and Figure 4 permits the capability to change w_n and d separately while Figure 2 equations do not. Normally, a design is easier if w_n and d can be chosen independently. Both factors affect the loop acquisition time and stability. A good starting value for d is 0.707 and $F_{ref}/10$ for w_n .

Manipulation of the equations allows calculation of R₁, R₂, and C₁ from the other measured, calculated, or picked parameters. For example,

$$R_1 + R_2 = \frac{K_{\emptyset}K_{VCO}}{NC_1w_1^2}$$
 (13)

$$R_2 = \frac{2d}{C_1 w_0} - \frac{N}{C_1 (K_{\emptyset} K_{VCO})}$$
 (14)

$$C_1 = \frac{K_{\emptyset}K_{VCO}}{Nw_n^2(R_1 + R_2)}, \ \ \text{or alternatively},$$

$$C_1 = \frac{2d}{R_2 w_n} - \frac{N}{R_2 (K_{\varnothing} K_{VCO})}$$

Usually, C₁, w_n, and d are picked and the remaining parameters calculated.

DESIGN EXAMPLE

The goal is to design a phase–locked loop that has an F_{ref} of 100 KHz, an output F_{O} of 1 MHz center frequency, and the ability to move from 200 KHz to 2 MHz in 100 KHz steps.

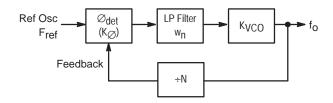


Figure 5. Parametized PLL

To determine N, use equation (1) for F_0 min = 200KHz, and F_0 max = 2MHz resulting in the following:

N min =
$$200/100 = 2$$
, and

$$N \max = 2000/100 = 20$$

The results so far indicate the following starting parameters:

A. A VCO with a 10:1 range is required

B.
$$w_n = F_{ref}/10 = 10KHz$$

$$C. d = 0.707$$

E.
$$V_{dd} = 5.0V$$

The F_0 center frequency \approx

$$\frac{F_{max} + F_{min}}{2} = \frac{2.0 + 0.2}{2} = 1.1 MHz$$

Recalling that the clamp voltage % at $V_{dd} = 5V$ is about 62, then F_{max} VCO_{in} limit = (0.62)(5) = 3.1V, but as described earlier, this needs to be reduced by a factor to bring it into linearity ($\approx 350 \text{mV}$) so the final F_{max} VCO_{in} limit = 2.75V.

For the F_{min} VCO_{in} limit pick 0.25V. This results in a center frequency VCO_{in} of:

Center freq
$$VCO_{in} = \frac{2.75 - 0.25}{2} = 1.25V$$

From 2, for picked values of $9.1 \text{K} \le \text{R}_1 \le 50 \text{K}$ and $30 \le \text{C}_{ext} \le 150$, obtain an estimate for $(\text{R}_1)(\text{C}_{ext})$ of $5.77/\text{F}_0$. Thus, at the F_0 center frequency,

$$(R_1)(C_{ext}) = \frac{5.77}{1.1*10^6} = 5.245*10^{-6}$$

Now, a reasonable starting point is established for setting the values of the loop filter and the VCO range. Choosing $R_1 = 9.1K$, C_{ext} becomes

$$C_{\text{ext}} = \frac{5.245 * 10^{-6}}{9.1 \text{K}} = 576 \text{pF WHOOPS!}$$

This value, 576pF, is outside of the original picked range for C_{ext} ; therefore, we need to go back and pick a larger value of R_1 , e.g., 42K should be sufficient. Then C_{ext} becomes

$$C_{\text{ext}} = \frac{5.245 * 10^{-6}}{42 \text{K}} = 125 \text{pF}$$

and now both R₁ and C_{ext} are within selected ranges.

Now calculate F_{max} and F_{min} using Equation (8) with R_1 = 42k Ω , R_2 = ∞ , V_{dd} = 5.0V, $I_{constant\ ratio}$ = 27 (from 1. and R_1 = 42k Ω), $V_{undershoot}$ = 0.57V (calculated from 6pF/mV (125pF–30pF) = 0.57V), VCO_{in} min = 0.25V, and VCO_{in} max = 2.75V:

$$F_0 \min = \frac{\frac{(3)(0.25)(27)}{42K} + \frac{(9.2)(5.0)}{\infty}}{(2)(125 * 10^{-12}f) [5.0V + 3(0.57V)]}$$

$$= \frac{20.25}{70.455 * 10^{-6}} = 287.4KHz$$

$$F_0 \max \frac{\frac{(3)(2.75)(27)}{42K} + \frac{(9.2)(5.0)}{\infty}}{(2)(125 * 10^{-12}f) [5.0V + 3(0.57V)]}$$

$$= \frac{222.75}{70.455 * 10^{-6}} = 3.16MHz$$

 F_{max} is > the required 2.0MHz, but the F_{min} is not low enough for required application. It is necessary to adjust either C_{ext} or R_1 to achieve required specification of 0.2 to 2.0MHz F_0 . Since $R_1 = 42 k\Omega$ is a standard resistor value, try adjusting C_{ext} to a higher value, such as 175pF. Because C_{ext} is now > 150pF, the $V_{undershoot}$ must be adjusted to 0.7V, as per earlier explanation:

So,

$$F_0 \min = \frac{\frac{(3)(0.25)(27)}{42K} + \frac{(9.2)(5.0)}{2}}{(2)(175 * 10^{-12}f) [5.0V + 3(0.7V)]}$$
$$= \frac{20.25}{104.37 * 10^{-6}} = 194.02KHz$$

and

$$F_0 \max \frac{\frac{(3)(2.75)(27)}{42K} + \frac{(9.2)(5.0)}{\infty}}{(2)(175 * 10^{-12} f) [5.0V + 3(0.7V)]}$$
$$= \frac{222.75}{104.37 * 10^{-6}} = 2.13MHz$$

These values are adequate for the specified application.

The next item to determine is the VCO gain factor, K_{VCO}, using Equation (9):

$$K_{VCO} = \frac{f_{max} - f_{min}}{VCO_{in} max - VCO_{in} min}$$

$$K_{VCO} = \frac{2.13 * 10^{6} - 0.194 * 10^{6}}{2.75V - 0.25V} = 774.4KHz/V$$

or in radians

$$= (2\pi) (774.4 * 103) = 4.86 * 106 Rad/sec/V$$

The final values used for the desired frequency range are $R_1 = 42k\Omega$, $C_{ext} = 175pF$, $R_2 = \infty$, VCO_{in} max = 2.75V, and VCO_{in} min = 0.25V.

The next step is to determine the loop filter. Choosing a filter like the one in Figure 3, calculate the component as follows:

$$K_{\varnothing}=\frac{Vdd}{4\pi}=\frac{5.0}{4\pi}=0.4V/rad$$

$$w_{\Omega}=\frac{100KHz}{10}=10KHz*2\pi=62.83*10^3 rad/sec$$

$$d=0.707 \text{ (for starters), and}$$

$$N=2 \text{ to } 20$$

where

 K_{\emptyset} = phase detector gain V_{dd} = output swing

Choose C_1 to be $0.01\mu F$, N=10 for approximate mid–range F_0 , and calculate R_1 and R_2 using Equations (13) and (14):

$$R_1 + R_2 = \frac{K_{\varnothing}K_{VCO}}{NC_1w_n^2} = \frac{(0.4)(4.86 * 10^6)}{(10)(0.01 * 10^{-6})(62.83 * 10^3)^2}$$
$$= \frac{1.944 * 10^6}{394.76} = 4924.5\Omega$$

$$R_2 = \frac{2d}{C_1 w_n} - \frac{N}{C_1 (K_{\emptyset} K_{VCO})}$$

$$= \frac{(2)(0.707)}{(0.01 * 10^{-6}) (62830)} - \frac{10}{(0.01 * 10^{-6})(0.4)(4.86 * 10^6)}$$

$$= 2250.52 - 514.4 = 1736\Omega$$

Then,
$$R_1 = 4924.5 - 1736 = 3188.5\Omega$$
.

Since N is changeable, it is a good idea to check min and max on w_n and d. For more information on why, see Application Note AN535/D or the MC4044 Data Sheet in the MECL Data Book DL122/D. The following examples show sample calculations for N=2 and 20.

For N = 20, use Equation (10) to calculate w_n and d:

$$\begin{split} w_{\text{n}} \, \text{min} &= \sqrt{\frac{\text{K}_{\emptyset} \text{K}_{\text{VCO}}}{\text{NC}_{1}(\text{R}_{1} + \text{R}_{2})}} \\ &= \sqrt{\frac{(0.4)(4.86 * 10^{6})}{(20)(0.01 * 10^{-6})(3188.5 + 1736)}} \\ &= 44.43 * 10^{3} \text{rad/sec}, \text{ or} \\ &= \frac{44.43 * 10^{3} \text{rad/sec}}{2\pi} \approx 7 \text{KHz} \end{split}$$

and

$$d_{min} = (0.5)(w_n) \left[R_2 C_1 + \frac{N}{K_{\varnothing} K_{VCO}} \right]$$

$$= (0.5)(44.43 * 10^3) *$$

$$\left[(1736)(0.01 * 10^{-6}) + \frac{20}{(0.4)(4.86 * 10^6)} \right]$$

= 0.6144

For N = 2:

$$\begin{split} w_{\text{n}} \, \text{max} &= \sqrt{\frac{(0.4)(4.86 * 10^6)}{(2)(0.01 * 10^{-6})(3188.5 + 1736)}} \\ &= 140.49 * 10^3 \text{rad/sec}, \text{ or} \\ &= \frac{140.49 * 10^3 \text{rad/sec}}{2\pi} = 22.36 \text{KHz} \end{split}$$

and

$$d_{\text{max}} = (0.5)(140.49 * 10^{3}) * \\ \left[(1736)(0.01 * 10^{-6}) + \frac{2}{(0.4)(4.86 * 10^{6})} \right]$$

$$= 1.292$$

This shows the effect of changing n on loop performance and for this application is adequate.

If the components are not what is desired, choosing a different \mathbf{w}_n and/or d allows them to be modified.

Alternatively, picking different C, R_1 or R_2 and recalculating the other parameters can be done. If the filter does not provide adequate performance, making w_n smaller or d larger may improve stability.

AN1410/D

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com

ch Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

 ${\rm *Available\ from\ Germany,\ France,\ Italy,\ England,\ Ireland}$

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.